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SHARP MAXIMAL FUNCTION ESTIMATES AND Hp CONTINUITIES OF
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G.Q. WANG1

Abstract. It is studied that pointwise estimates and continuities on Hardy spaces of the

pseudo-differential operators (PDOs for short) with the symbol in general Hörmander’s classes.

We get weighted weak-type (1, 1) estimate, weighted normal inequalities, (Hp, Hp) continuities

and (Hp, Lp) continuities for the PDOs, where 0 < p ≤ 1.
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1. Introduction

Let m ∈ R, 0 ≤ ϱ, δ ≤ 1. A symbol a(x, ξ) is said to be in the Hörmander Sm
ϱ,δ class as given

in [21], if a(x, ξ) ∈ C∞(Rn × Rn) with

|∂βx∂αξ a(x, ξ)| ≤ Cα,β⟨ξ⟩m−ϱ|α|+δ|β|,

for any multi-indices α, β. The pseudo-differential operators with symbol a(x, ξ) is defined by

the formula

Tau(x) =
1

(2π)n

∫
Rn

ei⟨x,ξ⟩a(x, ξ)û(ξ)dξ, (1)

where û denotes the fourier transform of u. An important topic on the pseudo-differential

operators is to study the properties of these operators acting on some function spaces and

some pointwise estimates for them. Lp regularity is a fundamental one which can be gotten by

the complex interpolation between L2-continuity and (L∞, BMO)-continuity, see [12, 34, 35].

As we know, L2-continuity of the pseudo-differential operators is sharp in terms of its order

m ≤ −n
2 max{δ − ϱ, 0}, where 0 ≤ ϱ ≤ 1 and 0 ≤ δ < 1, see [20, 19]. However, it is not clear

if the (L∞, BMO)-continuity is sharp when 0 ≤ ϱ < δ < 1, see [23, 27]. On the one hand, if

a(x, ξ) ∈ L∞Sm
ϱ with m < −n

2 (1− ϱ), the pseudo-differential operators are bounded on L∞(Rn)

[23], which implies the (L∞, BMO)-continuity. Here, L∞Sm
ϱ denotes the rough Hörmander class

whose constituent a(x, ξ) obeys

∥∂αξ a(·, ξ)∥L∞(Rn) ≤ Cα⟨ξ⟩m−ϱ|α|.

Clearly, the relation Sm
ϱ,δ ⊂ L∞Sm

ϱ holds for any m ∈ R, 1 ≤ ϱ, δ ≤ 1. On the other hand, there

is a symbol a a ∈ Sm
ϱ,0 such that Ta dose not map L∞ to BMO if m > −n

2 (1− ϱ), see [27].
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Recently, taking full advantage of the smooth of variate x, the author of the paper [40] prove

that if 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and a(x, ξ) ∈ S
−n

2
(1−ϱ)

ϱ,δ , the (L∞, BMO)-continuity of the pseudo-

differential operators Ta is true, and clearly it is sharp. Moreover, the Lp boundedness is studied

as well.

Theorem 1.1 (See [40]). Let 1 < p <∞, 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and a(x, ξ) ∈ Sm
ϱ,δ. If

m ≤ −n(1− ϱ)|1
2
− 1

p
| − n

max{δ − ϱ, 0}
max{p, 2}

,

then

∥Tau∥Lp . ∥u∥Lp .

Clearly, the range of m in [1, Theorem 3.4] is revised when 2 < p < ∞ and 0 ≤ ϱ < δ < 1.

For the case 1 < p <∞ and 0 ≤ δ ≤ ϱ < 1, we refer to [20, 35, 38].

It is a pity that the main idea is inapplicable to its dual operators T ∗
a which is defined by the

formula

T ∗
au(x) =

1

(2π)n

∫
Rn

∫
Rn

ei⟨x−y,ξ⟩a(y, ξ)dξu(y)dy. (2)

So, the (L∞, BMO)-continuity of T ∗
a has been understood so far [1] only if

a(y, ξ) ∈ S
−n

2
(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ . However, one can get (H1, L1)-continuity of T ∗
a under the con-

dition a(y, ξ) ∈ S
−n

2
(1−ϱ)

ϱ,δ (see Theorem 1.16). By complex interpolation, we have the following

result.

Theorem 1.2. Let 1 < p <∞, 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and a(x, ξ) ∈ Sm
ϱ,δ. If

m ≤ −n(1− ϱ)|1
2
− 1

p
| − nmax{δ − ϱ, 0}(1− 1

min{p, 2}
),

then

∥T ∗
au∥Lp . ∥u∥Lp .

In this paper, the properties of pseudo-differential operator acting on Hardy spaces Hp(Rn)

that is a right replacement for Lp(Rn) when 0 < p ≤ 1, and some pointwise estimates for these

operators are investigated. Clearly, the Lp(p ̸= 2) continuity between Ta and T ∗
a is different

in terms of the order m. Based on this observation, both Ta and T ∗
a will be considered in this

paper.

For the sake of narration, it is necessary to introduce some notations firstly. For a function

u ∈ L1
loc(Rn), we define the Fefferman-Stein sharp maximal function and Hardy-Littlewood

maximal function by:

M ♯u(x) = sup
x∈Q

inf
c

1

|Q|

∫
Q
|u(y)− c|dy and Mu(x) = sup

x∈Q

1

|Q|

∫
Q
|u(y)|dy

respectively, where c moves over all complex number, and Q containing x moves over all cubes

with its sides parallel to the coordinate axes. For ϵ > 0, let us denote M ♯
ϵu =

(
M ♯(|uϵ|)

)1/ϵ
and

Mϵu =
(
M(|uϵ|)

)1/ϵ
.

The pointwise estimate of pseudo-differential operators in terms of M ♯ and M are given by

many authors in [8, 22, 26, 27, 29, 39, 40]. We refer to [7, 4, 5] for the pointwise sparse bounds

of these operators. Here, one is apt to state a result given in [28].

Theorem 1.3 (see [28]). Let 1 < p ≤ 2, 0 < ϱ ≤ p
2 and ϱ < 1. If a ∈ S

−n(1−ϱ)/p
ϱ,ϱ , then

M ♯(Taf)(x) .Mpf(x).
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Clearly, there is a restriction on the range of ϱ, δ and p, that is 0 < ϱ = δ ≤ p
2 with ϱ < 1 and

p ̸= 1. Recently, this restriction on ϱ, δ is extended to 0 ≤ ϱ = δ < 1 in [29, 32] and to 0 ≤ ϱ ≤ 1,

0 ≤ δ < 1 when p = 2 in [40]. However, the case of 1 < p < 2, 0 ≤ ϱ ≤ 1, 0 ≤ ϱ < δ < 1 and

p = 1, 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 seems to be not clear. Particularly, there is no corresponding result

in case p = 1, but a weaker version is obtained in [24].

Theorem 1.4 (See [24]). Let 0 < ϱ ≤ 1, 0 ≤ δ < 1 and 1 < p <∞. If a ∈ S
−n(1−ϱ)
ϱ,δ , then

M ♯(Taf)(x) .Mpf(x).

The first main result of this paper is a generalization of Theorem 1.3. And the operator T ∗
a

is considered as well.

Theorem 1.5. Let 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and 1 < p ≤ 2. If a ∈ S
−n(1−ϱ)/p
ϱ,δ , then

M ♯(Taf)(x) .Mpf(x).

If a ∈ S
−n

p
(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ , then

M ♯(T ∗
a f)(x) .Mpf(x).

The second main result of this paper is extending p in Theorem 1.4 to the extreme case p = 1.

Theorem 1.6. Let 0 < ϱ ≤ 1, 0 ≤ δ < 1 and 0 < ϵ < 1. If a ∈ S
−n(1−ϱ)
ϱ,δ , then

M ♯
ϵ (Taf)(x) .Mf(x) and M ♯

ϵ (T
∗
a f)(x) .Mf(x).

Interesting that the order of T ∗
a in Theorem 1.5 seem to be improved when p = 1. It is not

clear that if the order of T ∗
a can be improved in the case 1 < p ≤ 2. Another interesting thing

is that the second estimate holds with a ∈ L∞S
−n(1−ϱ)
ϱ in case 0 < ϱ < 1.

Theorem 1.7. Let 0 < ϱ < 1. If a ∈ L∞S
−n(1−ϱ)
ϱ then

M ♯(T ∗
a f)(x) .Mf(x).

As we know, the pointwise estimates can give some weighted Lp inequalities. Recall that a

nonnegative locally integrable function ω belongs to the class of Muckenhoupt Ap weights if

there exists a constant C > 0 such that

sup
Q⊂Rn

(
1
|Q|
∫
Q ω(x)dx

)(
1
|Q|
∫
Q ω(x)

1
1−pdx

)p−1 ≤ C, when 1 < p <∞; (3)

Mω(x) ≤ Cω(x) for almost all x ∈ Rn, when p = 1. (4)

For p = ∞, one can define A∞ := ∪p>1Ap. The smallest constant appearing in (3) or (4) is

called the Ap constant of ω which is denoted by [ω]p. The usual notation that

∥u∥p
Lp
ω
=

∫
Rn

|u(x)|pω(x)dx and ∥u∥p
Lp,∞
ω

= sup
λ>0

λpω(x ∈ Rn : |u(x)| > λ)

will be adopted in this paper. The weighted Lp estimates for pseudo-differential operators has

been a topic extensively studied, specially in the 1980s [1, 8, 22, 28], later improved in [24, 25]

in the late 2000s and revisited in [29, 40] recently.

Theorem 1.8 (See [40]). Let 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1, 1 ≤ r ≤ 2 and a(x, ξ) ∈ S
−n

r
(1−ϱ)

ϱ,δ . Suppose

ω ∈ Ap/r with r < p <∞. Then, there is a constant C independent of a and u, such that

∥Tau∥Lp
ω
≤ C∥u∥Lp

ω
. (5)
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Theorem 1.8 is proved by some interpolations between r = 1 and r = 2. In this paper, a new

proof will be given.

By interpolation theory [6, Theorem 5.5.3] and the famous Fefferman-Stein’s inequalities [11],

we can write

∥Mϵu∥Lp
ω
. ∥M ♯

ϵu∥Lp
ω
, ∥Mϵu∥Lp,∞

ω
. ∥M ♯

ϵu∥Lp,∞
ω

for 0 < ϵ, p <∞ and ω ∈ A∞, Theorem 1.5, Theorem 1.6 and Theorem 1.7 lead to the following

weighted Lp inequalities.

Theorem 1.9. Let 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and 1 ≤ r ≤ 2. For any r ≤ p < ∞ (1 < p < ∞ if

r = 1) and ω ∈ Ap/r, if a(x, ξ) ∈ S
−n

r
(1−ϱ)

ϱ,δ , then

∥Tau∥Lp
ω
≤ C∥u∥Lp

ω
.

if a ∈ S
−n

r
(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ , then

∥T ∗
au∥Lp

ω
≤ C∥u∥Lp

ω
.

Theorem 1.10. Let 0 < ϱ ≤ 1, 0 ≤ δ < 1. For any 1 < p < ∞ and ω ∈ Ap, if a ∈ S
−n(1−ϱ)
ϱ,δ ,

then

∥Tau∥Lp
ω
≤ C∥u∥Lp

ω
and ∥T ∗

au∥Lp
ω
≤ C∥u∥Lp

ω
.

For p = 1 and ω ∈ A1, if a ∈ S
−n(1−ϱ)
ϱ,δ , then

∥Tau∥L1,∞
ω

≤ C∥u∥L1
ω
and ∥T ∗

au∥L1,∞
ω

≤ C∥u∥L1
ω
.

Theorem 1.11. Let 0 < ϱ < 1. For any 1 < p <∞ and ω ∈ Ap, if a ∈ L∞S
−n(1−ϱ)
ϱ , then

∥T ∗
au∥Lp

ω
≤ C∥u∥Lp

ω
.

For p = 1 and ω ∈ A1, if a ∈ L∞S
−n(1−ϱ)
ϱ , then

∥T ∗
au∥L1,∞

ω
≤ C∥u∥L1

ω
.

The main contribution of these theorems, besides getting the weighted Lp boundedness of T ∗
a ,

is extending the range of ϱ, δ to general case. Especially, the case p = r = 1 is considered as

well. Here, we would like to highlight potential directions for further research, such as extending

the study from Lp spaces to Morrey spaces. For progress on Calderón-Zygmund operators (a

class of the PDOs) in Morrey spaces, we refer the reader to [10, 15, 16, 17] and the references

therein.

Another topic of this paper is to investigate some properties of pseudo-differential operator Ta
and its dual operators T ∗

a acting on Hardy spaces Hp(Rn), where 0 < p ≤ 1. The first property

is (Hp,Hp) continuity, which can go back to the studies [2, 3]. They introduce strongly singular

Calderón-Zygmund operators T and prove the operators T satisfying T ∗(1) = 0 acts continuously

on Hp(Rn) for p0 < p ≤ 1. As an application, they point out that the pseudo-differential

operators Ta with symbols in S
−n

2
(1−ϱ)

ϱ,δ are included in strongly singular Calderón-Zygmund

operators, where 0 < δ ≤ ϱ < 1. Later, in [1] the authors extend the range of ϱ and δ to more

general case, that is, 0 < ϱ ≤ 1 and 0 ≤ δ < 1, but a ∈ S
−n

2
(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ .

Theorem 1.12 (See [1]). Let 0 < ϱ ≤ 1, 0 ≤ δ < 1 and a(x, ξ) ∈ Sm
ϱ,δ. If

m ≤ −n
2
(1− ϱ)− n

2
max{δ − ϱ, 0}

and T ∗
a (1) = 0 in the sense of BMO. Then, Ta maps continuously Hp into itself for p0 < p ≤ 1,

where 1
p0

= 1
2 +

n
2
(1−ϱ)(1/ϱ+n/2)

n(1/ϱ−1+n
2
(1−ϱ)) .
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The approach to prove this theorem is applying the atomic and molecular characterization of

Hp(Rm). The advantage of this approach is that one only needs to show that TaaQ, the image

of a (p, 2) atom aQ, is a suitable molecule. The condition that T ∗
a (1) = 0 is used only to provide

the cancellation condition of the molecule, that is,
∫
Rn TaaQ(x)dx = 0, at cost of restricting the

range of p into p0 < p ≤ 1. So, the higher degree of cancellation, namely,

T ∗
a (x

α) = 0, for |α| ≤ [n(
1

p
− 1)], (6)

is required to extend for p below p0. Here and below, [x] indicates the integer part of x. See

[13, 18, 37] for the case of Calderón-Zygmund operators. Notice that (6) is used only to provide∫
Rn x

αTaaQ(x)dx = 0 for |α| ≤ [n(1p − 1)]. So, we use the following condition instead of (6) in

this paper as:

Definition 1.1. Let 0 < p ≤ 1, t ∈ N+ ∪ {0}, T be a operator and L2
c,t(Rn) denote the set of

functions in L2
c(Rn) such that

∫
Rn x

βf(x)dx = 0 for |β| ≤ t. If f ∈ L2
c,t(Rn), then∫

Rn

xαTf(x)dx = 0, for |α| ≤ [n(
1

p
− 1)]. (7)

Here, L2
c(Rn) denotes the set of functions in L2(Rn) with compact support.

As we known, for the atomic decomposition of an element of Hp(Rn), one can always choose

(p, 2) atoms with an number of additional vanishing moments that is known as (p, 2, t) atoms

with t ≥ [n(1p−1)] (see [35]). Clearly, if f is a (p, 2, t) atom, then f ∈ L2
c,t(Rn) with t ≥ [n(1p−1)].

Moreover, the proof of Proposition 3.1 below implies that (7) for both Ta and T
∗
a are well defined,

where the symbol a is given in Theorem 1.13.

Theorem 1.13. Let 0 < p < 1, 0 ≤ ϱ ≤ 1 and 0 ≤ δ < 1.

(1) If T ∗
a defined as (2) satisfies condition (7) and a ∈ S

−n(1−ϱ)( 1
p
− 1

2
)

ϱ,δ . Then, the operator

T ∗
a is bounded on Hp(Rn).

(2) If Ta defined as (1) satisfies condition (7) and a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

ϱ,δ . Then,

the operator Ta is bounded on Hp(Rn).

Compared with Theorem 1.12, Theorem 1.13 extend p below p0 and improve the range of m.

The second property investigated in this paper is (Hp, Lp) continuity of pseudo-differential

operators, which can go back to the results of the papers [11] and [9] for p = 1, which is extended

to the case 0 < p ≤ 1 as given in [33].

Theorem 1.14 (See [33]). Let 0 < p ≤ 1 and 0 ≤ δ ≤ ϱ < 1. If a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)

ϱ,δ . Then, the

operators Ta defined as (1) is bounded from Hp(Rn) to Lp(Rn).

Actually, the authors of the paper [33] get that Ta is continuously hp into itself. Here, hp
denotes the local Hardy spaces introduced in [14]. We also refer to [30, 31] for the extension

to Triebel-Lizorkin spaces that coincident with the local Hardy spaces for some special index.

Theorem 1.14 holds because of the fact Hp ⊂ hp ⊂ Lp for 0 < p < ∞. As we see, the case

0 ≤ ϱ < δ < 1 is not considered in Theorem 1.14. And this case is considered in [1] later.

Theorem 1.15 (In [1]). Let 0 < ϱ ≤ 1, 0 ≤ δ < 1 and p0 given as Theorem 1.12 (it is understood

that for ϱ = 1, p0 = n/(n+1)). If a ∈ S
−n

2
(1−ϱ)−n

2
max(0,δ−ϱ)

ϱ,δ . Then, the operators Ta defined as

in (1) is bounded from Hp(Rn) to Lp(Rn) for p0 ≤ p ≤ 1, when 0 < ϱ < 1, and for p0 < p ≤ 1,

when ϱ = 1.
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Compared with Theorem 1.14, Theorem 1.15 relaxes the range of ϱ, δ, but put a restriction

on p and the order of Ta. Both of them do not contain the case ϱ = 0, 0 < δ < 1. In this paper,

we prove the following result.

Theorem 1.16. Let 0 < p ≤ 1, 0 ≤ ϱ ≤ 1 and 0 ≤ δ < 1.

(1) If a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)

ϱ,δ . Then, the operators T ∗
a defined as (2) is bounded from Hp(Rn) to

Lp(Rn).

(2) If a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

ϱ,δ . Then, the operators Ta defined as (1) is bounded from

Hp(Rn) to Lp(Rn).

2. The proof of pointwise estimate for the sharp maximal function

Let us denote

K(x, y) =
1

(2π)n

∫
Rn

ei⟨x−y,ξ⟩a(x, ξ)dξ and K∗(x, y) =
1

(2π)n

∫
Rn

ei⟨x−y,ξ⟩a(y, ξ)dξ. (8)

Then, Ta and T ∗
a can be written as:

Tau(x) =

∫
Rn

K(x, y)u(y)dy and T ∗
au(x) =

∫
Rn

K∗(x, y)u(y)dy (9)

respectively. Now, we introduce the standard Littlewood-Paley partition of unity. Let C > 1 be

a constant. Set E−1 = {ξ : |ξ| ≤ 2C}, Ej = {ξ : C−12j ≥ |ξ| ≤ C2j+1}, j = 0, 1, 2, · · · .

Lemma 2.1. There exist ψ−1(ξ), ψ(ξ) ∈ C∞
0 , such that

(1) supp ψ ⊂ E0, supp ψ−1 ⊂ E−1;

(2) 0 ≤ ψ ≤ 1, 0 ≤ ψ−1 ≤ 1;

(3) ψ−1(ξ) +
∞∑
j=1

ψ(2−jξ) = 1.

By Lemma 2.1, the symbol a(x, ξ) can been written as:

a(x, ξ) = a(x, ξ)
(
ψ−1(ξ) +

∞∑
j=1

ψ(2−jξ)
)
=:

∞∑
j=0

aj(x, ξ).

Consequently, the operator Ta and T ∗
a can been decomposed as:

Tau(x) =
∞∑
j=0

Tju(x) and T
∗
au(x) =

∞∑
j=0

T ∗
j u(x), (10)

respectively, where

Tju(x) =

∫
Rn

Kj(x, y)u(y)dy with Kj(x, y) =
1

(2π)n

∫
Rn

ei⟨x−y,ξ⟩aj(x, ξ)dξ, (11)

T ∗
j u(x) =

∫
Rn

K∗
j (x, y)u(y)dy with K∗

j (x, y) =
1

(2π)n

∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)dξ. (12)

Lemma 2.2. Let 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and a(x, ξ) ∈ Sm
ϱ,δ. If 1 < p ≤ 2 ≤ q <∞ and

m ≤ −n(1
p
− 1

q
)− n

2
max{δ − ϱ, 0},

then

∥Tau∥Lq . ∥u∥Lp and ∥T ∗
au∥Lq . ∥u∥Lp .
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By Hardy-Littlewood-Sobolev estimate and L2-estimate for pseudo-differential operators, in

[1] the authors proved the first inequality in the case of 0 < ϱ ≤ 1. The case ϱ = 0 and the

second inequality can been obtained by the same way.

Lemma 2.3. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 ≤ ϱ ≤ 1, 0 ≤ δ < 1

and 1 < p ≤ 2. For any positive integer j satisfying 2jl < 1, if a(x, ξ) ∈ S
−n

p
(1−ϱ)

ϱ,δ , then∫
Rn

|u(y)||Kj(x, y)−Kj(z, y)|dy . 2jlMpu(x0), ∀x, z ∈ Q(x0, l). (13)

if a(x, ξ) ∈ S
−n

p
(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ , then∫
Rn

|u(y)||K∗
j (x, y)−K∗

j (z, y)|dy . 2jlMpu(x0), ∀x, z ∈ Q(x0, l). (14)

Proof. The idea behind the proof of (13) is standard which could be found in [8]. So, we omit it

here. However, to prove (14), this method has to be modified since the Parseval’s identity can

not be used directly. Firstly, the integrand of left side of (14) can be bounded by:∫
Rn

|u(y)||
∫
Rn

(
ei⟨x−y,ξ⟩ − ei⟨z−y,ξ⟩)aj(y, ξ)dξ|dy. (15)

Break up this integrand as follows∫
|y−x0|≤2−jϱ+1

+

∫
|y−x0|>2−jϱ+1

Hölder’s inequality show that the first term is bounded by:(∫
|y−x0|≤2−jϱ+1

|u(y)|pdy

) 1
p (∫

Rn

|
∫
Rn

ei⟨x̃−y,ξ⟩aj(y, ξ)(x− z) · ξdξ|p′dy
) 1

p′

, (16)

where x̃ denotes some point between x and z. For any fixed x and z, let bj(y, ξ) = aj(x̃ −
y, ξ)|ξ|

n
p
(1−ϱ)−n( 1

2
− 1

p′ ) and ĝj(ξ) = |ξ|−
n
p
(1−ϱ)+n( 1

2
− 1

p′ )χj(ξ)(x− z) · ξ. Then, we can write∫
Rn

ei⟨y,ξ⟩aj(x̃− y, ξ)(x− z) · ξdξ = Tbjgj(y).

Notice that bj ∈ S
−n( 1

2
− 1

p′ )−
n
2
max{δ−ϱ,0}

ϱ,δ , by Lemma 2.2 we have

∥T ∗
bj
gj∥Lp′ . ∥gj∥L2 = ∥ĝj∥L2 .

Therefore, the formula given in (16) is bounded by

2jlMpu(x0).

By Hölder’s inequality, integrating by parts and the fact that |y − x0| ∼ |y − x| follows from
2jl < 1, x ∈ Q(x0, l) and |y − x0| > 2−jϱ+1, the second term is bounded by:(∫

|y−x0|>2−jϱ+1

|u(y)|p

|y − x0|pN
dy

) 1
p

×
∑

|α|=N

(∫
Rn

|
∫
Rn

ei⟨x̃−y,ξ⟩∂αξ (aj(y, ξ)(x− z) · ξ) dξ|p′dy
) 1

p′

. (17)
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For any fixed x and z, let b̃j(y, ξ) = ∂αξ
(
aj(y, ξ)(x − z) · ξ

)
|ξ|

n
p
(1−ϱ)−n( 1

2
− 1

p′ )+ϱ|α|
and ̂̃gj(ξ) =

|ξ|−
n
p
(1−ϱ)+n( 1

2
− 1

p′ )−ϱ|α|
χj(ξ). Then, we can write∫
Rn

ei⟨y,ξ⟩∂αξ
(
aj(x̃− y, ξ)(x− z) · ξ

)
dξ = T ∗

b̃j
g̃j(y).

Clearly, b̃j ∈ S
−n( 1

2
− 1

p′ )−
n
2
max{δ−ϱ,0}

ϱ,δ with bounds . 2jl. Moreover, by Lemma 2.2 we have

∥T ∗
b̃j
g̃j∥Lp′ . 2jl∥g̃j∥L2 = 2jl∥ ˆ̃gj∥L2 .

By a simple calculation, we can get the expression given in (17) is bounded by

. 2jlMpu(x0).

Thus, the following desired estimate can be provided. �

Lemma 2.4. Let Q(x0, l) be a fixed cube with side length l < 1 0 ≤ ϱ ≤ 1 and 0 ≤ δ <

1. For any positive integer N > n
p and any positive integer j with l−1 ≤ 2j ≤ l

− 1
ϱ , if a ∈

S
−n

p
(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ , then

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx . 2
j n
2
( n
Np

−1)
l
n
2
( n
Np

−1)
Mpu(x0) (18)

and

1

|Q|

∫
Q(x0,l)

|T ∗
j u(x)|dx . 2

j n
2
( n
Np

−1)
l
n
2
( n
Np

−1)
Mpu(x0). (19)

Remark 2.1. If ϱ = 0, the condition l−1 ≤ 2j ≤ l
− 1

ϱ is interpreted as l−1 ≤ 2j. If ϱ = 1, this

lemma is no use.

Proof. Notice that a(x, ξ)ψ(2−jξ) ∈ S
−n( 1

p
− 1

2
)−n

2
max{δ−ϱ,0}

ϱ,δ with the bounds. 2
−j n

p
(1−ϱ)+n( 1

p
− 1

2
)
.

So, Tj is bounded from Lp to L2, see Lemma 2.2. More exactly, we have

∥Tju∥L2 . 2
−j n

p
(1−ϱ)+n( 1

p
− 1

2
)∥u∥Lp .

Let integral N defined as above and set

T = l
n
2N 2j(

n
2N

−ϱ),

u1(x) = u(x)χQ(x0,4T )(x) and u2(x) = u(x)− u1(x), (20)

where χQ(x0,4T )(x) is the characteristic function of the ball Q(x0, 4T ). Then, the left hand of

(18) can be bounded by:∫
Q(x0,l)

|Tju1(x)|dx+

∫
Q(x0,l)

|Tju2(x)|dx =:M1 +M2.

Hölder’s inequality and (p, 2)-boundedness of Tj imply that M1 is bounded by:

l
n
2 ∥Tju1∥L2 . 2

−j n
p
(1−ϱ)+n( 1

p
− 1

2
)
l
n
2 ∥u1∥Lp

. 2
j n
2
( n
Np

−1)
l
n
2
( n
Np

+1)
Mpu(x0). (21)

For M2, noticing that for any x ∈ Q(x0, l) and any y ∈ QC(x0, 4T ), we have

|y − x| ≥ |y − x0|
2

.
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Hölder’s inequality, integrating by parts and Parseval’s identity give that |Tju2(x)| is bounded
by (∫

|y−x0|>4T

|u(y)|p

|y − x0|pN
dy

) 1
p
(∫

|y−x0|>4T
|y − x0|p

′N |
∫
Rn

ei⟨x−y,ξ⟩a(x, ξ)ψ(2−jξ)dξ|p′dy

) 1
p′

.
(∫

|y−x0|>4T

|u(y)|p

|y − x0|pN
dy

) 1
p (∫

Rn

|∂αξ a(x, ξ)ψ(2−jξ)|pdξ
) 1

p

. 2
j n
2
( n
Np

−1)
l
n
2
( n
Np

−1)
Mpu(x0).

So

M2 =

∫
Q(x0,l)

|Tju2(x)|dx . 2
j n
2
( n
Np

−1)
l
n
2
( n
Np

+1)
Mpu(x0). (22)

Thus, the desired estimate (18) follows from (21) and (22). So, we complete the proof. �

Lemma 2.5. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ < δ < 1,

a ∈ S
−n

p
(1−ϱ)

ϱ,δ . Then for any 1 ≤ λ ≤ 1
ϱ , any positive integer N > n

p and any positive integer j

with l−λ ≤ 2j ≤ l
− 1

ϱ , we have

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx .
(
2jδlλ + 2

j n
2
( n
Np

−1)
l
nλ
2
( n
Np

−1))
Mpu(x0).

Proof. If 1 < λ ≤ 1
ϱ , then l

λ < l. Take integer L such that it is the first number no less than

l1−λ, that is L− 1 < l1−λ ≤ L. Then, there are Ln cubes with the same side length lλ covering

Q(x0, l). Moreover, we have

Q(x0, l) ⊂ ∪Ln

i=1Q(xi, l
λ) ⊂ Q(x0, 2l).

Clearly, Ln ≤ 2nln(1−λ). Denote

Tj,iu(x) =

∫
Rn

ei⟨x,ξ⟩a(xi, ξ)ψ(2
−jξ)û(ξ)dξ. (23)

We can write

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx

≤ 1

|Q|

Ln∑
i=1

(∫
Q(xi,lλ)

|Tju(x)− Tj,iu(x)|dx+

∫
Q(xi,lλ)

|Tj,iu(x)|dx
)
. (24)

Now, we claim that

|Tju(x)− Tj,iu(x)| . |x− xi|2jδMpu(x0), (25)∫
Q(xi,lλ)

|Tj,iu(x)|dx . 2
j n
2
( n
Np

−1)
l
nλ
2
( n
Np

+1)
Mpu(x0). (26)

Since Ln ≤ 2nln(1−λ), we can get the desired estimate by substituting both (25) and (26) into

(24).

Note that |Tju(x)− Tj,iu(x)| is bounded by:∫
Rn

|u(y)||
∫
Rn

ei⟨x−y,ξ⟩(a(x, ξ)− a(xi, ξ)
)
ψ(2−jξ)dξ|dy.

Then, (25) follows from the same argument as (36).
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Now, we will prove (26). For fixed xi, we can see that a(xi, ξ)ψ(2
−jξ) ∈ S

−n( 1
p
− 1

2
)

ϱ,0 with the

bounds . 2
−j n

p
(1−ϱ)+n( 1

p
− 1

2
)
. So, Tj,i is bounded from Lp to L2. More exactly, we have

∥Tj,iu∥L2 . 2
−j n

p
(1−ϱ)+n( 1

p
− 1

2
)∥u∥Lp .

Fix positive integral N large enough and set

T = l
nλ
2N 2j(

n
2N

−ϱ),

ui,1(x) = u(x)χQ(xi,4T )(x) and ui,2(x) = u(x)− ui,1(x), (27)

where χQ(xi,4T )(x) is the characteristic function of the ball Q(xi, 4T ). Then, (26) follows from

the same argument as (18).

If λ = 1, we define

Tj,0u(x) =

∫
Rn

ei⟨x,ξ⟩a(x0, ξ)ψ(2
−jξ)û(ξ)dξ. (28)

Then, the desired estimate can be obtained by the same argument as above with Tj,iu replaced

by Tj,0u. So, the proof is completed. �

We remark that the same result holds for the case ϱ = 0. Here, the range of λ can be extended

to [1,∞). However, to make some sums convergent, λ has to be confined to a finite range.

Lemma 2.6. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose ϱ = 0, 0 < δ < 1,

a ∈ S
−n

p

0,δ , then for any 1 ≤ λ ≤ 2
p(1−δ) , any positive integer N > n

p and any positive integer j

with l−λ ≤ 2j ≤ l
− 2

p(1−δ) ,

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx .
(
2jδlλ + 2

j n
2
( n
Np

−1)
l
nλ
2
( n
Np

−1))
Mpu(x0).

Lemma 2.7. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 1 < p ≤ 2, ϱ = 0,

0 ≤ δ < 1, a ∈ S
−n

p

0,δ , then for any positive integer N > n
p and any positive integer j with

l
− 2

p(1−δ) ≤ 2j,

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx . 2
−j n

2
(1−δ)(1− n

pN
)
l
−n

p
(1− n

pN
)
Mpu(x0).

Proof. Denote

Γ = 2
j n
pN

(1−δ)
l

n
pN .

Set u3(x) = u(x)χQ(x0,2Γ)(x) and u4(x) = u(x)− u3(x). Then

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx ≤ 1

|Q|

∫
Q(x0,l)

|Tju3(x)|dx+
1

|Q|

∫
Q(x0,l)

|Tju4(x)|dx. (29)

Notice that a(x, ξ)ψ(2−jξ) ∈ S
−n( 1

p
− 1

2
)−n

2
δ

ϱ,δ with bounds . 2−j n
2
(1−δ). Hölder’s inequality and

the Lp-estimate of Tj give that

1

|Q|

∫
Q
|Tju3(x)|dx . 2−j n

2
(1−δ)l

−n
p ∥u1∥Lp . 2−j n

2
(1−δ)l

−n
p Γ

n
pMpu(x0)

= 2
−j n

2
(1−δ)(1− n

pN
)
l
−n

p
(1− n

pN
)
Mpu(x0). (30)
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Notice that Γ > l. We have |y − x| ∼ |y − x0| for ∀x ∈ Q(x0, l) and ∀y ∈ QC(x0, 2Γ). So,

direct computations show that

|Tju4(x)| ≤
∫
|y−x0|≥2Γ

|Kj(x, x− y)||u(y)|dy . Γ
(n
p
−N)

Mpu(x0)

= 2
−j n

2
(1−δ)(1− n

pN
)
l
−n

p
(1− n

pN
)
Mpu(x0),

which implies that

1

|Q|

∫
Q(x0,l)

|Tju4(x)|dx . 2
−j n

2
(1−δ)(1− n

pN
)
l
−n

p
(1− n

pN
)
Mpu(x0). (31)

Clearly, the desired estimate follows from (29), (30) and (31). �

Taking Γ = l in the proof Lemma 2.7, we can get a similar result for ϱ > 0 with the same

argument as above.

Lemma 2.8. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ ≤ 1, 0 ≤ δ < 1

and 1 < p ≤ 2. For any positive integer N > n
p and any positive integer j with l

− 1
ϱ ≤ 2j, if

a ∈ S
−n

p
(1−ϱ)

ϱ,δ then

1

|Q|

∫
Q(x0,l)

|Tju(x)|dx .
(
2−j(n

2
(1−ϱ)−n

2
max{δ−ϱ,0}) + 2

−jϱ(n
p
−N)

l
n
p
−N))

Mpu(x0)

and

1

|Q|

∫
Q(x0,l)

|T ∗
j u(x)|dx .

(
2−j(n

2
(1−ϱ)−n

2
max{δ−ϱ,0}) + 2

−jϱ(n
p
−N)

l
n
p
−N))

Mpu(x0);

Proof of Theorem 1.5. Without loss of generality, we assume that the symbol a(x, ξ) vanishes

for |ξ| ≤ 1. Let Q = Q(x0, l) denote the cube centered at x0 with the side length l. For any fixed

cube Q, we are going to prove that

1

|Q|

∫
Q
|Tau(x)− CQ|dx ≤ CMpu(x0), (32)

where CQ = 1
|Q|
∫
Q Tau(y)dy. The proof is trivial for l ≥ 1, we omit it here. We consider on

0 < l < 1. Note that the left hand of (32) can be controlled by:

1

|Q|2

∫
Q

∫
Q
|Tau(x)− Tau(y)|dydx. (33)

We compose the operator Ta as (10), then estimate (33) by∑
1<2j≤l−1

1

|Q|2

∫
Q

∫
Q
|Tju(x)− Tju(z)|dzdx +

∑
l−1<2j

2

|Q|

∫
Q
|Tju(x)|dx. (34)

Lemma 2.3 implies that

|Tju(x)− Tju(z)| ≤
∫
Rn

|u(y)||Kj(x, y)−Kj(z, y)|dy ≤ C2j |x− z|Mpu(x0).

So, the first term in (34) is bounded by

Mpu(x0)l
∑

1<2j≤l−1

2j .Mpu(x0). (35)

Next, we claim that the second term in (34) can be controlled by Mpu(x0) as well.
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Case 1. 0 ≤ δ ≤ ϱ ≤ 1, δ ̸= 1 If ϱ = 0, then by Lemma 2.4 and Remark 2.1 the second term

in (34) can be bounded by:∑
l−1<2j

2
j n
2
( n
Np

−1)
l
n
2
( n
Np

−1)
Mpu(x0) .Mpu(x0).

If ϱ ̸= 0, we break up this sum as follows∑
l−1<2j≤l

− 1
ϱ

2

|Q|

∫
Q
|Tju(x)|dx+

∑
l
− 1

ϱ<2j

2

|Q|

∫
Q
|Tju(x)|dx. (36)

Then, Lemma 2.4 and Lemma 2.8 imply that they can be controlled by∑
l−1<2j≤l

− 1
ϱ

2
j n
2
( n
Np

−1)
l
n
2
( n
Np

−1)
Mpu(x0)

+
∑

l
− 1

ϱ<2j

(
2−j(n

2
(1−ϱ)−n

2
max{δ−ϱ,0}) + 2

−jϱ(n
p
−N)

l
n
p
−N))

Mpu(x0) .Mpu(x0).

Case 2. 0 ≤ ϱ < δ < 1 If ϱ ̸= 0, we break up this sum as (36) as well. By Lemma 2.8, the

second term in (36) can be controlled by Mpu(x0). For the first term in (36), we write∑
l−1<2j≤l

− 1
ϱ

2

|Q|

∫
Q
|Tju(x)|dx =

( ∑
l−1<2j≤l−

1
δ

+
∑

l−
1
δ <2j≤l

− 1
δ2

+...+
∑

l
− 1

δk−1 <2j≤l
− 1

δk

+ ...+
∑

l
− 1

δγ−1 <2j≤min{l−
1
ϱ ,l

− 1
δγ }

) 1

|Q|

∫
Q(x0,l)

|Tju(x)|dx,

where γ is the first positive integer such that 1
δγ ≥ 1

ϱ . Then, take λ = 1
δk
, k = 0, 1, ..., γ − 1 in

Lemma 2.5 respectively, we can see that each sum above is bounded by Mpu(x0). Therefore, we

have ∑
l−1<2j≤l

− 1
ϱ

2

|Q|

∫
Q
|Tju(x)|dx ≤ CγMpu(x0). (37)

If ϱ = 0, we break up this sum as follows∑
l−1<2j≤l

− 2
p(1−δ)

2

|Q|

∫
Q
|Tju(x)|dx+

∑
l
− 2

p(1−δ)<2j

2

|Q|

∫
Q
|Tju(x)|dx. (38)

Applying Lemma 2.6 and Lemma 2.7 instead of Lemma 2.8 and Lemma 2.5, we can get the

desired estimate by the same argument as above. So, the proof is finished.

�

Next, we started to prepare for proving the case p = 1, that is, Theorem 1.6 and Theorem

1.7.

Lemma 2.9. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 ≤ ϱ ≤ 1 and

0 ≤ δ < 1. For any positive integer j satisfying 2jl < 1, if a(x, ξ) ∈ S
−n(1−ϱ)
ϱ,δ , then∫

Rn

|u(y)||Kj(x, y)−Kj(z, y)|dy . 2jlMu(x0), ∀x, z ∈ Q(x0, l) (39)

and ∫
Rn

|u(y)||K∗
j (x, y)−K∗

j (z, y)|dy . 2jlMu(x0), ∀x, z ∈ Q(x0, l). (40)
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Proof. The proof of (39) and (40) is standard. We only show a outline of proving (40). The

integrand of left side of (40) can be bounded by:∫
Rn

|u(y)||
∫
Rn

(
ei⟨x−y,ξ⟩ − ei⟨z−y,ξ⟩)aj(y, ξ)dξ|dy. (41)

Break up this integrand as follows∫
|y−x0|≤2−jϱ+1

+

∫
|y−x0|>2−jϱ+1

.

A direct calculation gives the first term is bounded by 2jlMu(x0), and integration by parts with

respect to the variable ξ yields that the second term has the same bound. Thus, the proof is

completed. �

Remark 2.2. Notice that the smooth of variable y in a(y, ξ) is not used in the proof of (40).

So, it can be get in a relaxed condition. More exactly, (40) can been obtained under condition

a(y, ξ) ∈ L∞S
−n(1−ϱ)
ϱ .

Lemma 2.10. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ ≤ 1 and

0 ≤ δ < 1. For any positive integer j with l−1 ≤ 2j ≤ l
− 1

ϱ , if a ∈ S
−n(1−ϱ)−n

2
max{δ−ϱ,0}

ϱ,δ then

1

|Q(x0, l)|

∫
Q(x0,l)

|Tjf(x)|dx . 2−j n
2 l−

n
2Mf(x0); (42)

if a ∈ S
−n(1−ϱ)
ϱ,δ then

1

|Q(x0, l)|

∫
Q(x0,l)

|T ∗
j f(x)|dx . 2−j n

2 l−
n
2Mf(x0). (43)

Proof. Firstly, we will prove (42). Hölder’s inequality and Minkowski’s inequality implies that

the left hand in (42) can be bounded by:

l−
n
2

∫
Rn

(∫
|x−x0|<l

|Kj(x, y)|2dx

) 1
2

|f(y)|dy.

So, it suffices to show∫
Rn

(∫
|x−x0|<l

|Kj(x, y)|2dx

) 1
2

|f(y)|dy . 2−j n
2Mf(x0).

Break up the integral with respect to the variable y as follows∫
|y−x0|≤2−jϱ+1

+

∫
|y−x0|>2−jϱ+1

. (44)

Let cj(x, ξ) = aj(x, ξ)|ξ|n(1−ϱ) and ĥj(ξ) = |ξ|−n(1−ϱ)χj(ξ). Then, we can write

Kj(x, y) =

∫
Rn

ei⟨x−y,ξ⟩aj(x, ξ)dξ =

∫
Rn

ei⟨x−y,ξ⟩cj(x, ξ) ˆhj(ξ)dξ = Tcjhj(x− y).

So, the first term in (44) can be written as∫
|y−x0|≤2−jϱ+1

( ∫
Rn

|Tcjhj(x− y)|2dx
) 1

2 |f(y)|dy.

Notice cj ∈ S
−n

2
max{δ−ϱ,0}

ϱ,δ . Moreover, Tcj is bounded on L2. So, it can be bounded by∫
|y−x0|≤2−jϱ+1

|f(y)|dy
( ∫

Rn

|hj(ξ)|2dξ
) 1

2 ≤ 2−j n
2Mf(x0).
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Now, we will estimate the second term in (44). For positive integer N > n, denote c̃j(x, ξ) =

∂Nξ aj(x, ξ)|ξ|n(1−ϱ)+ϱN and ̂̃hj(ξ) = |ξ|−n(1−ϱ)−ϱNχj(ξ). Then, we can write

Kj(x, y) =
1

|x− y|N

∫
Rn

ei⟨x−y,ξ⟩∂Nξ aj(x, ξ)dξ =
1

|x− y|N
Tc̃j h̃j(x− y).

So, the second term in (44) can be written as∫
|y−x0|>2−jϱ+1

( ∫
|x−x0|<l

| 1

|y − x|N
Tc̃j h̃j(x− y)|2dx

) 1
2 |f(y)|dy.

Notice that |y−x| ∼ |y−x0| for any |x−x0| < l and |y−x0| > 2−jϱ+1 ≥ 2l. Then, it is bounded

by ∫
|y−x0|>2−jϱ+1

1

|y − x0|N
( ∫

Rn

|Tc̃j h̃j(x− y)|2dx
) 1

2 |f(y)|dy.

Clearly, c̃j ∈ S
−n

2
max{δ−ϱ,0}

ϱ,δ . So, L2 boundedness of Tc̃j gives that it has bound∫
|y−x0|>2−jϱ+1

1

|y − x0|N
|f(y)|dy

( ∫
Rn

|h̃j(ξ)|2dξ
) 1

2 ≤ 2−j n
2Mf(x0).

For (43), it can be provided by the same argument as above with L2 boundedness of pseudo-

differential operators replaced by Parseval’s identity. So, the proof is completed. �

We remark that there is no use for the smoothness of variable y of a(y, ξ) when we prove (43).

So, the condition on a(y, ξ) can be relaxed. More exactly, have the following results

Lemma 2.11. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ ≤ 1. For any

positive integer j with l−1 ≤ 2j ≤ l
− 1

ϱ , if a ∈ L∞S
−n(1−ϱ)
ϱ then

1

|Q(x0, l)|

∫
Q(x0,l)

|T ∗
j f(x)|dx . 2−j n

2 l−
n
2Mf(x0). (45)

Lemma 2.12. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ < δ < 1. For

for any 1 ≤ λ ≤ 1
ϱ and any positive integer j with l−λ ≤ 2j ≤ l

− 1
ϱ , if a ∈ S

−n(1−ϱ)
ϱ,δ then

1

|Q(x0, l)|

∫
Q(x0,l)

|Tjf(x)|dx .
(
lλ2jδ + l−

nλ
2 2−j n

2
)
Mf(x0).

Proof. The proof can be completed by a similar argument as in the proof of Lemma 2.5. Using

the notations in them, one can write

1

|Q|

∫
Q(x0,l)

|Tjf(x)|dx

≤ 1

|Q|

Ln∑
i=1

(∫
Q(xi,lλ)

|Tjf(x)− Tj,if(x)|dx+

∫
Q(xi,lλ)

|Tj,if(x)|dx
)
.

It is easy to get

|Tjf(x)− Tj,if(x)| . lλ2jδMf(x0)

and ∫
Q(xi,lλ)

|Tj,if(x)|dx . 2−j n
2 l

nλ
2 Mf(x0).

Recall Ln ≤ 2nln(1−λ), the desired estimate can be obtained immediately. �
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Applying weak (1, 1) estimate for Tj and Kolmogorov’s inequality instead of Lp estimate in

the proof Lemma 2.8, we can get a similar result for ϱ > 0.

Lemma 2.13. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ ≤ 1, 0 ≤ δ < 1

and 0 < ϵ < 1. For any positive integer N > n and any positive integer j with l
− 1

ϱ ≤ 2j, if

a ∈ S
−n(1−ϱ)
ϱ,δ then

1

|Q|

∫
Q(x0,l)

|Tju(x)|ϵdx .
(
2−j(n

2
(1−ϱ)−n

2
max{δ−ϱ,0})ϵ + 2−jϱ(n−N)ϵln−N)ϵ

)(
Mu(x0)

)ϵ
(46)

and

1

|Q|

∫
Q(x0,l)

|T ∗
j u(x)|ϵdx .

(
2−j(n

2
(1−ϱ)−n

2
max{δ−ϱ,0})ϵ + 2−jϱ(n−N)ϵln−N)ϵ

)(
Mu(x0)

)ϵ
. (47)

Proof of Theorem 1.6. Without loss of generality, we assume that the symbol a(x, ξ) vanishes

for |ξ| ≤ 1. Let Q = Q(x0, l) denote the cube centered at x0 with the side length l. For any fixed

cube Q, we are going to prove that

1

|Q|

∫
Q
||Tau(x)|ϵ − |CQ|ϵ|dx .

(
Mu(x0)

)ϵ
,

where CQ = 1
|Q|
∫
Q Tau(y)dy. Notice that ||a|ϵ − |b|ϵ| ≤ |a− b|ϵ, 0 < ϵ < 1, it suffices to prove

1

|Q|

∫
Q
|Tau(x)− CQ|ϵdx .

(
Mu(x0)

)ϵ
. (48)

Clearly, the left hand integral in (48) for any 0 < ϵ < 1 can be bounded by∑
j

2

|Q|2

∫
Q

∫
Q
|Tju(x)− Tju(y)|ϵdydx.

Then, by the same argument as the proof Theorem 1.6, we can get the desired estimate. �

Proof of Theorem 1.7. We give a outline here, since it can be proved by a similar argument as

above. Clearly, it suffices to show∑
j

2

|Q|2

∫
Q

∫
Q
|T ∗

j u(x)− T ∗
j u(y)|dydx .Mu(x0).

For the case l < 1. Break up this sum as follows∑
2j<l−1

+
∑

l−1≤2j≤l
− 1

ϱ

+
∑

l
− 1

ϱ<2j

.

Then, we can get the desired estimate for the first term (2j < l−1) and the second term (l−1 ≤
2j ≤ l

− 1
ϱ ) by Remark 2.2 and Lemma 2.11 respectively. As for the last term (l

− 1
ϱ < 2j) and the

case l > 1, it can be estimated by following lemma. So, the proof is completed. �

Lemma 2.14. Suppose 0 < ϱ < 1. For any positive integer N > n, if a ∈ L∞S
−n(1−ϱ)
ϱ then for

0 < θ < n
2 (1− ϱ)

1

|Q|

∫
Q(x0,l)

|T ∗
j u(x)|dx .

(
2−j(n

2
(1−ϱ)−θ) + 2−jϱ(n−N)ln−N)

)
Mu(x0). (49)
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Proof. We show an outline here. Set u5(x) = u(x)χQ(x0,2l)(x) and u6(x) = u(x)− u5(x). Then

1

|Q|

∫
Q(x0,l)

|T ∗
j u(x)|dx ≤ 1

|Q|

∫
Q(x0,l)

|T ∗
j u5(x)|dx+

1

|Q|

∫
Q(x0,l)

|T ∗
j u6(x)|dx. (50)

Notice that aj(y, ξ) ∈ S
−n

2
(1−ϱ)−θ

ϱ,δ with bounds . 2−j n
2
(1−ϱ)+jθ. The L1-estimate of T ∗

j given

that

1

|Q|

∫
Q
|T ∗

j u5(x)|dx . 2−j n
2
(1−ϱ)+jθMu(x0). (51)

Notice that |y − x| ∼ |y − x0| for ∀x ∈ Q(x0, l) and ∀y ∈ QC(x0, 2l). So, integrating by parts

gives that

|T ∗
j u6(x)| . 2−jϱ(n−N)ln−N)Mu(x0). (52)

Clearly, the desired estimate follows from (50), (51) and (52). �

3. The proof of continuity on Hardy spaces

A tempered distribution f belongs to Hardy spacesHp(Rn) if, for some ϕ ∈ ℑ with
∫
Rn ϕ(x)dx ̸=

0, the maximal operator

Mϕf(x) := sup
t>0

|f ∗ ϕt(x)|

is in Lp(Rn), where ϕt(x) = t−nϕ(x/t). The continuity properties of pseudo-differential operator

Ta and operators T ∗
a acting on Hardy spaces Hp(Rn) will be done by standard atomic and

molecular technique [36].

Definition 3.1. Let 0 < p ≤ 1 ≤ q ≤ ∞, p ̸= q, and the nonnegative integer s ≥ [n(1p − 1)]. A

function a(x) ∈ Lq(Rn) is called a (p, q, s) atom with the center at x0, if it satisfies the following

conditions:

(1) suppaQ ⊂ Q; (2)

∫
Rn

|aQ(y)|q ≤ |Q|1−
q
p ; (3)

∫
Rn

aQ(y)y
αdy = 0, 0 ≤ |α| ≤ s.

Definition 3.2. (See [36]) Let 0 < p ≤ 1 ≤ q ≤ ∞, p ̸= q, and the nonnegative integer

s ≥ [n(1p −1)], ϵ > max{ s
n ,

1
p −1},a0 = 1− 1

p + ϵ and b0 = 1− 1
q + ϵ. A (p, q, s, ϵ) molecule center

at x0 is a function M such that M(x) ∈ Lq(Rn) and |x|nb0M(x) ∈ Lq(Rn) satisfying:

(1) ∥M∥a0Lq∥M(·)| · −x0|nb0∥b0−a0
Lq <∞; (2)

∫
Rn

M(x)xαdx = 0, 0 ≤ |α| ≤ s.

To prove Theorem 1.13, it suffices to show the followings.

Proposition 3.1. Let aQ be a (p, 2, 2t) atom with 0 < p < 1 and t be an even integer t > n
p .

(1) If T ∗
a defined as in (2) satisfies condition (1) in Theorem 1.13. Then, T ∗

a aQ is a

(p, 1, [n(1p − 1)], t
n − 1

2) molecule.

(2) If Ta defined as in (1) satisfies condition (2) in Theorem 1.13. Then, TaaQ is a (p, 1, [n(1p−
1)], t

n − 1
2) molecule.

Lemma 3.1. Let 0 < p ≤ 1, t ≥ [n(1p − 1)] and aQ is a (p, 2, 2t)-atom with the center at the

origin and Q = Q(0, l) is a cube on which aQ is supported. Suppose 0 < l < 1, 0 ≤ ϱ ≤ 1
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and 0 ≤ δ < 1. For any positive integer j with 2j ≤ l−1 and any positive integer 2N1 >
n
2 , if

a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)

ϱ,δ then∫
Rn

|T ∗
j aQ(x)|qdx . 2

jqn
(

t
2N1

( 1
q
− 1

2
)+ϱ( 1

p
− 1

q
)+(1− 1

p
)
)
l
qn
(

t
2N1

( 1
q
− 1

2
)+(1− 1

p
)
)
; (53)∫

Rn

|x|qt|T ∗
j aQ(x)|qdx . 2

jqn
(

t
2N1

( 1
q
− 1

2
)+ϱ( 1

p
− 1

q
)+(1− 1

p
)
)
+jqt(1−ϱ)

l
qn
(

t
2N1

( 1
q
− 1

2
)+(1− 1

p
)
)
+qt

. (54)

Proof. Firstly, we will prove (53). Denote

T = l
t

2N1 2
j t
2N1

−jϱ
,

and break up the integral with respect to the variable x as follows∫
|x|≤2T

+

∫
|x|>2T

. (55)

Next, we show that both of them are bounded by the right hand in 53. Hölder’s inequality and

Minkowski’s inequality show that the first integral in (55) is bounded by:

Tn(1− q
2
)

(∫
Q(0,l)

|aQ(y)|
( ∫

Rn

|
∫
Rn

ei⟨x−y,ξ⟩a(y, ξ)dξ|2dx
) 1

2dy

)q

.

Recall that aQ is a (p, 2, 2t)-atom and T = l
t

2N1 2
j t
2N1

−jϱ
. Then, the desired estimate can be

provided Parseval’s identity.

Next, we estimate the second integral in (55). Integrating by parts gives that for any multi-

index α with |α| = N1∫
Rn

ei⟨x,ξ⟩
∫
Rn

e−i⟨y,ξ⟩aj(y, ξ)aQ(y)dydξ

= |x|−2N1
∑

|α1|+|α2|=|α|

∫
Rn

ei⟨x,ξ⟩
∫
Rn

e−i⟨y,ξ⟩(△ξ)
α2
(
aj(y, ξ)

)
y2α1aQ(y)dydξ.

For any fixed ξ ∈ Rn, let Pξ be the Taylor polynomial in y of degree t− 2|α1| − 1 of

e−i,ξ⟩(△ξ)
α2
(
aj(y, ξ)

)
about the origin. Then∫

Rn

e−i⟨y,ξ⟩(△ξ)
α2
(
aj(y, ξ)

)
y2α1aQ(y)dy

=

∫
Rn

(
e−i⟨y,ξ⟩(△ξ)

α2aj(y, ξ)− P (y)
)
y2α1aQ(y)dy

=
∑

|β1|+|β2|=|β|

∫
Rn

e−i⟨ȳ,ξ⟩ξβ1
(
∂β2
y (△ξ)

α2
)(
aj(ȳ, ξ)

)
y2α1+βaQ(y)dy,

where |β| = t− 2|α1| and ȳ is a point around the origin. Therefore, we can write

T ∗
j aQ(x) =

1

|x|2N1

∑
|α1|+|α2|=|α|

∑
|β1|+|β2|=|β|

×
∫
Rn

∫
Rn

ei⟨x−ȳ,ξ⟩ξβ1
(
∂β2
y (△ξ)

α2
)(
aj(ȳ, ξ)

)
y2α1+βaQ(y)dξdy. (56)
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By Hölder’s inequality and Minkowski’s inequality, the second integral in (55) is bounded by:

∑
|α1|+|α2|=|α|

∑
|β1|+|β2|=|β|

(∫
|x|>T

1

|x|2N1(
2q
2−q

)
dx

)1− q
2

×
(∫

Q(0,l)
|aQ(y)|

( ∫
Rn

|
∫
Rn

ei⟨x−ȳ,ξ⟩ξβ1
(
∂β2
y (△ξ)

α2
)(
aj(ȳ, ξ)

)
y2α1+βdξ|2dx

) 1
2dy

)q

.

Recall that aQ is a (p, 2, 2t)-atom and T = l
t

2N1 2
j t
2N1

−jϱ
. Then, the desired estimate can be

obtained Parseval’s identity.

The main idea to prove (54) is writing |x|t|T ∗
j aQ(x)| as sum of T ∗ first, then following the

same method as above to estimate these operator. To this end, we fixed |α| = t
2 in (56) and

give a clear relationship between y and ȳ. We can write

e−i⟨y,ξ⟩(△ξ)
α2
(
aj(y, ξ)

)
= Pξ(y) + Ct

∫ 1

0
(1− θ)t−2|α2|

(
∂2α−2α2
y e−i⟨·,ξ⟩(△ξ)

α2
(
aj(·, ξ)

))
(θy)y2α−2α2dθ.

The cancellation condition of aQ gives

|x|tT ∗
j aQ(x) = Ct

∑
|α1|+|α2|=|α|

∫ 1

0
(1− θ)t−2|α2|

∑
|β1|+|β2|=|β|

×
∫
Rn

∫
Rn

ei⟨x−θy,ξ⟩ξβ1
(
∂β2
y (△ξ)

α2
)(
aj(θy, ξ)

)
y2α1+βaQ(y)dξdydθ,

where |β| = t − 2|α1|. Denote aj,β1,β2(y, ξ) = ξβ1
(
∂β2
y (△ξ)

α2
)(
aj(y, ξ)

)
and fα1,β,Q(y) =

y2α1+βaQ(y). Then

|x|tT ∗
j aQ(x) = Ct

∑
|α1|+|α2|=|α|

∫ 1

0
(1− θ)t−2|α2|θ−n

∑
|β1|+|β2|=|β|

(
T ∗
aj,β1,β2

fα1,β,Q(θ·)
)
(x)dθ,

Moreover,∫
Rn

|x|qt|T ∗
j aQ(x)|qdx .

( ∑
|α1|+|α2|=|α|

∫ 1

0
(1− θ)t−2|α2|θ−n

×
∑

|β1|+|β2|=|β|

( ∫
Rn

|
(
T ∗
aj,β1,β2

fα1,β,Q(θ·)
)
(x)|qdx

) 1
q dθ

)q

, (57)

Notice that aj,β1,β2 ∈ S
−n(1−ϱ)( 1

p
− 1

2
)+t(1−ϱ)

ϱ,δ with its normal independent of j, β1, β2 and fα1,β,Q(x)

satisfies suppfα1,β,Q ⊂ Q,
∫
Rn |fα1,β,Q(x)|dx ≤ |Q|1−

1
p
+ t

n and
∫
Rn fα1,β,Q(y)y

αdy = 0, 0 ≤ |α| ≤
t, since aQ is a (p, 2, 2t) atom.

By the same argument as (53), we can get∫
Rn

|
(
T ∗
aj,β1,β2

fα1,β,Q(θ·)
)
(x)|qdx . θqn2

jqn
(

t
2N1

( 1
q
− 1

2
)+ϱ( 1

p
− 1

q
)+(1− 1

p
)
)
+jqt(1−ϱ)

× l
qn
(

t
2N1

( 1
q
− 1

2
)+(1− 1

p
)
)
+qt

.

By substituting this into (57), the desired estimate can be provided immediately, since that∫ 1
0 (1− θ)t−2|α2|dθ . 1 is always true for 2|α1| ≤ t. �
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Lemma 3.2. Let Q(0, l) be a fixed cube with side length l < 1. Suppose 0 < q < 2, 0 < p < 1,

0 < ϱ < 1 and 0 ≤ δ < 1. For any positive integer j with l−1 ≤ 2j < l
− 1

ϱ if a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)

ϱ,δ

then ∫
Rn

|T ∗
j aQ(x)|qdx . 2

jqn
(
ϱ( 1

p
− 1

q
)+(1− 1

p
)
)
l
qn(1− 1

p
)
; (58)∫

Rn

|x|qt|T ∗
j aQ(x)|qdx . 2

jqn
(
ϱ( 1

p
− 1

q
)+(1− 1

p
)
)
−jqtϱ

l
qn(1− 1

p
)
. (59)

Proof. Firstly, we will prove (58). Break up the integral with respect to the variable x as follows∫
|x|≤2−jϱ+1

+

∫
|x|>2−jϱ+1

. (60)

Hölder’s inequality and Parseval’s identity show that the first integral in (60) is bounded by:(∫
|x|≤2−jϱ

dx

)1− q
2
(∫

Rn

|
∫
Q(0,l)

∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)aQ(y)dξdy|2dx

) q
2

(61)

≤ 2−jnϱ(1− q
2
)

(∫
Q(0,l)

|aQ(y)|
( ∫

Rn

|
∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)dξ|2dx
) 1

2dy

)q

. 2−jnϱ(1− q
2
)

(∫
Q(0,l)

|aQ(y)|
( ∫

Rn

|aj(y, ξ)|2dξ
) 1

2dy

)q

. 2
−jnϱ(1− q

2
)+jq(−n(1−ϱ)( 1

p
− 1

2
)+n

2
)
l
q(n−n

p
)
.

By Hölder’s inequality, integrating by parts, Parseval’s identity and the fact |x| ∼ |x − y|
follows from l < 1, y ∈ Q(0, l) and |x| > 2−jϱ+1. The second integral in (60) is bounded by:

( ∫
|x|>2−jϱ+1

1

|x|N( 2q
2−q

)
dx
)1− q

2

×
( ∫

|x|>2−jϱ+1

|x|2N |
∫
Q(0,l)

∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)aQ(y)dξdy|2dx
) q

2 (62)

. 2
−jϱq

(
n( 1

q
− 1

2
)−N

)(∫
Q(0,l)

|aQ(y)|
( ∫

Rn

|x− y|2N |
∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)dξ|2dx
) 1

2dy

)q

. 2
−jϱq

(
n( 1

q
− 1

2
)−N

)(∫
Q(0,l)

|aQ(y)|
( ∫

Rn

|∂αξ aj(y, ξ)|2dξ
) 1

2dy

)q

. 2
−jqϱ

(
n( 1

q
− 1

2
)−N

)
+jq(−n(1−ϱ)( 1

p
− 1

2
)+n

2
−ϱN)

l
q(n−n

p
)
.

The proof of (59) is a little different from (58), that is, the first term in (61) and (62) is

( ∫
|x|≤2−jϱ

|x|t
2q
2−q dx

)1− q
2 and

( ∫
|x|>2−jϱ+1

1

|x|(N−t)( 2q
2−q

)
dx
)1− q

2 .

�

In the course of the above proof, if ϱ = 0, |x| ∼ |x− y| is still true for l < 1, y ∈ Q(0, l) and

|x| > 2. Thus, we have the followings.
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Lemma 3.3. Let Q(0, l) be a fixed cube with side length l < 1. Suppose 0 < q < 2, 0 < p < 1

and 0 ≤ δ < 1. For any positive integer j with l−1 ≤ 2j if a ∈ S
−n( 1

p
− 1

2
)

0,δ then∫
Rn

|T ∗
j aQ(x)|qdx . 2

jqn(1− 1
p
)
l
qn(1− 1

p
)
; (63)∫

Rn

|x|qt|T ∗
j aQ(x)|qdx . 2

jqn(1− 1
p
)
l
qn(1− 1

p
)
. (64)

Lemma 3.4. Suppose 0 < q < 2, 0 < p ≤ 1, 0 ≤ ϱ < 1 and 0 ≤ δ < 1. For any positive integer

2N2 >
n(2−p)

2 , if a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)

ϱ,δ then∫
Rn

|T ∗
j aQ(x)|qdx . l

qn( 1
q
− 1

p
)
2
−jq
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ l

q
(
n( 1

q
− 1

p
+ 1

2
)−N2

)
2
jq(−n(1−ϱ)( 1

p
− 1

2
)+n

2
−ϱN2), (65)∫

Rn

|x|qt|T ∗
j aQ(x)|qdx . l

qn( 1
q
− 1

p
)+qt

2
−jq
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ l

q
(
n( 1

q
− 1

p
+ 1

2
)−N2

)
2
jq
(
−n(1−ϱ)( 1

p
− 1

2
)+n

2
−ϱ(N2+t)

)
. (66)

Proof. Break up the integral with respect to the variable x as follows∫
|x|≤2l

+

∫
|x|>2l

. (67)

Notice that aj(y, ξ) ∈ S
−n

2
max(0,δ−ϱ)

ϱ,δ with bounds . 2
−jn(1−ϱ)( 1

p
− 1

2
)+j n

2
max(0,δ−ϱ)

. Hölder’s in-

equality and the L2-estimate of Tj give that the first integral in (67) is bounded by:( ∫
|x|≤2l

dx
)1− q

2 ∥T ∗
j aQ∥

q
L2 (68)

≤ ln(1−
q
2
)2

−jq
(
n(1−ϱ)( 1

q
− 1

2
)−n

2
max(0,δ−ϱ)

)
∥aQ∥qL2

. l
qn( 1

q
− 1

p
)
2
−jq
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
.

By Hölder’s inequality, integrating by parts, the Parseval’s identity and the fact that |x| ∼ |x−y|
follows from l < 1, y ∈ Q(0, l) and |x| > 2l. The second integral in (67) is bounded by:( ∫

|x|>2l

1

|x|N2(
2q
2−q

)
dx
)1− q

2

×
( ∫

|x|>2l
|x|2N2 |

∫
Q(0,l)

∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)aQ(y)dξdy|2dx
) q

2 (69)

. l
q
(
n( 1

q
− 1

p
+ 1

2
)−N2

)
2
jq(−n(1−ϱ)( 1

p
− 1

2
)+n

2
−ϱN2).

The proof of (66) is a little different from (65), that is, (68) and (69) in this case are given as:( ∫
|x|≤2l

|x|t
2p
2−pdx

)1− p
2 ∥T ∗

j aQ∥
p
L2

and ( ∫
|x|>2l

1

|x|N2(
2p
2−p

)
dx
)1− p

2

×
( ∫

|x|>2l
|x|2(N2+t)|

∫
Q(0,l)

∫
Rn

ei⟨x−y,ξ⟩aj(y, ξ)aQ(y)dξdy|2dx
) p

2 ,



G.Q. WANG: SHARP MAXIMAL FUNCTION ESTIMATES AND Hp CONTINUITIES ... 265

respectively. �

Remark 3.1. Lemma 3.2 and Lemma 3.4 are still valid when ϱ = 1, but both of them can not be

used. In fact, there is no T ∗
j in Lemma 3.2 and no convergence factor in Lemma 3.4. However,

the Hp-continuity in this paper can be proved without them.

Remark 3.2. Lemma 3.1, Lemma 3.2 and Lemma 3.4 hold for Tj. They can be proved parallelly,

provided in the argument above if we apply the L2-estimate for pseudo-differential operators

instead of the Parseval’s identity at cost of a ∈ S
−n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

ϱ,δ .

Proof of Proposition 3.1. (1) is considered firstly. By standard molecular technique, it is suf-

ficient to show that if aQ be a (p, 2, 2t) atom with t an even integer t > n
p , then T ∗aQ is a

(p, 1, s, ϵ) molecule, where s = [n(1p − 1)]. Without loss of generality, we assume Q = Q(0, l).

Take ϵ = t
n − 1

2 (clearly,ϵ > max{ s
n ,

1
p − 1}), then a0 = 1− 1

p + t
n and b0 =

t
n . The vanishing of

T ∗aQ is clear. So, it has to be shown that

∥T ∗aQ∥
1− 1

p
+ t

n

L1 ∥| · |tT ∗aQ(·)∥
1
p
−1

L1 <∞.

To this end, it suffices to show the following inequalities{
∥T ∗aQ∥L1 . l

ϱ(n−n
p
)

and ∥| · |tT ∗aQ(·)∥L1 . l
ϱ(t+n−n

p
)
, if 0 < l < 1;

∥T ∗aQ∥L1 . l
(n−n

p
)

and ∥| · |tT ∗aQ(·)∥L1 . l
(t+n−n

p
)
, if l ≥ 1;

We compose the operator Ta as (10) when 0 ≤ ϱ < 1, then ∥T ∗aQ∥L1 and ∥| · |tT ∗aQ(·)∥L1 are

bounded by: ∑
j

∫
Rn

|T ∗
j aQ(x)|dx and

∑
j

∫
Rn

|x|t|T ∗
j aQ(x)|dx.

Case 1. For 0 < l < 1; break up this sum as before, that is,
∑

2j<l−1

+
∑

l−1<2j
, if ϱ = 0;∑

2j<l−1

+
∑

l−1≤2j≤l
− 1

ϱ

+
∑

l
− 1

ϱ<2j

, if 0 < ϱ < 1. (70)

If 0 < ϱ < 1, by Lemma 3.1, Lemma 3.2 and Lemma 3.4 after taking q = 1, the corresponding

sum can be bounded by∑
2j<l−1

2
jnϱ( 1

p
−1)+jn(1− 1

p
)+jn t

2N
(1− p

2
)
l
n(1− 1

p
)+n t

2N
(1− p

2
)
+

∑
l−1≤2j≤l

− 1
ϱ

2
−jn(1−ϱ)( 1

p
−1)

l
n(1− 1

p
)

+
∑

l
− 1

ϱ<2j

(
l
n(1− 1

p
)
2
−j
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ l

n(1− 1
p
)+(n

2
−N2)2

−j
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
+ϱN2

))
.

Clearly, the second sum above is convergent to l
ϱ(n−n

p
)
since n(1− ϱ)(1p − 1) > 0. Note that t is

large enough, and so we can choose suitable positive integer 2N > n
2 so that nϱ(1p − 1) + n(1−

1
p)+n t

2N (1− p
2) > 0 since 1− p

2 > 0. The first sum is convergent to l
ϱ(n−n

p
)
as well. Notice that

n(1− ϱ)(1p − 1
2)−

n
2 max(0, δ − ϱ) > 0, the first term in last sum is convergent to

l
n(1− 1

p
)+ 1

ϱ
(n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

= l
ϱ(n−n

p
)+n

ϱ

(
( 1
p
− 1

2
)(1−ϱ)2+ 1

2
(−ϱ2+ϱ)−max(0,δ−ϱ)

)
.
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Notice that l < 1 and

n

ϱ

(
(
1

p
− 1

2
)(1− ϱ)2 +

1

2
(−ϱ2 + ϱ)− 1

2
max(0, δ − ϱ)

)
≥ n

ϱ

(
(
1

p
− 1

2
)(1− ϱ)2 +

1

2
(−ϱ2 + 2ϱ− 1)

)
=

n

ϱ
(
1

p
− 1)(1− ϱ)2 > 0.

We can get the first term in last sum is less then l
ϱ(n−n

p
)
. Taking N2 large enough, we get the

second term in last sum is convergent to

l
n(1− 1

p
)+n

2
+ 1

ϱ
(n(1−ϱ)( 1

p
− 1

2
)−n

2
)
= l

ϱ(n−n
p
)+n

ϱ

(
( 1
p
−1)(1−ϱ)2

)
≤ l

ϱ(n−n
p
)
.

If ϱ = 0. Lemma 3.1, Lemma 3.2 after taking q = 1, and Lemma 3.3 give that the corre-

sponding sum can be bounded by:∑
2j<l−1

2
jn(1− 1

p
)+jn t

2N
(1− p

2
)
l
n(1− 1

p
)+n t

2N
(1− p

2
)
+
∑

l−1≤2j

2
−jn( 1

p
−1)

l
n(1− 1

p
) . 1

If ϱ = 1, we can divide a(x, ξ), with respect to variate ξ, smoothly into two parts, that is,

a(x, ξ) = ã1(x, ξ) + ã2(x, ξ) with suppξã1(x, ξ) ⊂ {|ξ| ≤ l−1} and suppξã2(x, ξ) ⊂ {|ξ| ≥ l−1}.
For T ∗

ã1
, we compose it into

∑
j T

∗
ã1,j

as (10), then T ∗
ã1,j

aQ = 0 when 2j ≥ l−1 and T ∗
ã1,j

aQ meat

the condition of Lemma 3.1 when 2j ≤ l−1. So∫
Rn

|T ∗
ã1,jaQ(x)|dx ≤

∑
2j≤l−1

∫
Rn

|T ∗
ã1,jaQ(x)|dx

.
∑

2j<l−1

2
jn( 1

p
−1)+jn(1− 1

p
)+jn t

2N
(1− p

2
)
l
n(1− 1

p
)+n t

2N
(1− p

2
) . l

(n−n
p
)
.

Notice that ã2(y, ξ) ∈ S0
1,δ. By the same argument as Lemma 3.4, it is easy to get∫

Rn

|T ∗
ã2aQ(x)|dx . l

n(1− 1
p
)
.

Next, we show the inequality ∥| · |tT ∗aQ(·)∥L1 . l
ϱ(t+n−n

p
)
. Notice that t is fixed large enough

and lt ≤ lϱt for 0 ≤ ϱ ≤ 1, this inequality can be obtained by a similar argument as above. Here,

the estimates (54),(59) and (66) will be applied instead of (53), (58) and (65).

Case 2. l ≥ 1; (65) in Lemma 3.4 gives (after taking q = 1 and N2 large enough)∑
j

∫
Rn

|T ∗
j aQ(x)|dx .

∑
j

(
l
n(1− 1

p
)
2
−j
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ l

n(1− 1
p
)+(n

2
−N2)2

−j
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
+ϱN2

))
. l

n(1− 1
p
)
.

(66) in Lemma 3.4 gives (after taking q = 1 and N2 large enough)∑
j

∫
Rn

|x|t|T ∗
j aQ(x)|dx .

∑
j

(
l
n(1− 1

p
)+t

2
−j
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ l

n(1− 1
p
)+(n

2
−N2)2

−j
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
+ϱ(N2+t)

))
. l

n(1− 1
p
)+t

+ l
n(1− 1

p
) ≤ l

n(1− 1
p
)+t
.

By Remark 3.2, the proofs of (2) are completely parallel. �
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Proof of Theorem 1.16. The proofs of (1) will be shown only and the proofs of (2) are completely

parallel. Here, we always assume 0 ≤ ϱ < 1 as the case ϱ = 1 is considered in Theorem 1.15.

The 0 < p < 1 is considered firstly. Let nonnegative integer t ≥ [n(1p − 1)] ([x] indicates the

integer part of [x]). A function aQ ∈ L(Rn) is called (p, 2, t) atom if it satisfies the following

conditions:

(1) suppaQ ⊂ Q; (2)

∫
Rn

|aQ(y)| ≤ |Q|1−
1
p ; (3)

∫
Rn

aQ(y)y
αdy = 0, 0 ≤ |α| ≤ t,

where Q = Q(ȳ, l) is the cube about ȳ with sidelength l > 0. According to the characterization

of the Hardy spaces Hp(Rn) via the atomic decomposition, it suffices to show that∫
Rn

|T ∗aQ(x)|pdx ≤ C, (71)

for an individual (p, 2, t) atom aQ, where constant C independent of aQ. We assume without

loss of generality the center of the cube Q is at the origin and decompose the operator T ∗
a as

(10). Then, we have ∫
Rn

|T ∗aQ(x)|pdx ≤
∞∑
j=0

∫
Rn

|T ∗
j aQ(x)|pdx. (72)

For the case l ≥ 1, Lemma 3.4 (after taking q = p) implies that it can be bounded by:
∞∑
j=0

(
2
−jp
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ lp(

n
2
−N2)2

−jp(n(1−ϱ)( 1
p
− 1

2
)−n

2
+ϱN2)

)
.

Clearly, n(1−ϱ)(1p −
1
2)−

n
2 max(0, δ−ϱ) > 0 and n(1−ϱ)(1p −

1
2)−

n
2 +ϱN2 > 0 (the case ϱ = 0

is trivial and the case ϱ ̸= 0 can be provided by letting N2 large enough). So, the sum above is

convergence.

Next, we consider on the case l < 1. Break up the sum in (72) as (70) again.

If 0 < ϱ < 1, by Lemma 3.1, Lemma 3.2 and Lemma 3.4 (after taking q = p), we see that it

can be bounded by:∑
2j<l−1

2
jn(p−1)+jn t

2N1
(1− p

2
)
l
n(p−1)+n t

2N1
(1− p

2
)
+

∑
l−1≤2j≤l

− 1
ϱ

2jn(p−1)ln(p−1)

+
∑

l
− 1

ϱ<2j

(
2
−jp
(
n(1−ϱ)( 1

p
− 1

2
)−n

2
max(0,δ−ϱ)

)
+ lp(

n
2
−N2)2

−jp(n(1−ϱ)( 1
p
− 1

2
)−n

2
+ϱN2)

)
.

It is easy to see that the second term above is convergent since 0 < p < 1. Let t large enough,

and then we can choose suitable positive integer 2N1 >
n(2−p)

2 so that n(p−1)+n t
2N1

(1− p
2) > 0

since 1− p
2 > 0. The first term is convergent too. Taking N2 large enough, we get the last term

is convergent to

1 + l
n(1−p)( 1

ϱ
−1) . 1.

If ϱ = 0, by Lemma 3.1, Remark 3.3 and the same argument as above, we get the desired

estimate easily.

Now, we consider that p = 1. The case 0 ≤ δ ≤ ϱ < 1 has been performed in [33]. The

remaining case 0 ≤ ϱ < δ < 1 will be considered only. To this end, break the sum in (72) as (70)

again. The sum for 2j < l−1 and 2j > l−
1

1−δ when ϱ = 0, and for 2j < l−1 and 2j > l
− 1

ϱ when

0 < ϱ < 1 are convergence by Lemma 3.1 and Lemma 3.4 (after taking q = p = 1). By Lemma

3.2, one can not deal with the sum for l−1 ≤ 2j ≤ l−
1

1−δ when ϱ = 0, and for l−1 ≤ 2j ≤ l
− 1

ϱ when

0 < ϱ < 1 as above. Because, there is no convergence factor in this lemma when q = p = 1. One
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can overcome this problem as the corresponding case in the proof of Theorem 1.5 by following

lemmas. The proof is completed. �

Lemma 3.5. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose 0 < ϱ < δ < 1,

a ∈ S
−n

2
(1−ϱ)

ϱ,δ . Then for any 1 ≤ λ ≤ 1
ϱ , any positive integer N > n

2 and any positive integer j

with l−λ ≤ 2j ≤ l
− 1

ϱ , we have∫
Rn

|T ∗
j aQ(x)|dx . 2jδlλ + 2j

n
2
( n
2N

−1)l
nλ
2
( n
2N

−1).

Lemma 3.6. Let Q(x0, l) be a fixed cube with side length l < 1. Suppose ϱ = 0, 0 < δ < 1,

a ∈ S
−n

2
0,δ , then for any 1 ≤ λ ≤ 1

1−δ , any positive integer N > n
2 and any positive integer j with

l−λ ≤ 2j ≤ l−
1

1−δ , ∫
Rn

|T ∗
j aQ(x)|dx . 2jδlλ + 2j

n
2
( n
2N

−1)l
nλ
2
( n
2N

−1).

These lemmas can be proved by the main idea in the proof Lemma 2.5. We will only outline

the proof of Lemma 3.5.

Proof of Lemma 3.5. Let Q(xi, l
λ) be given as in the proof of Lemma 2.5.

Q(x0, l) ⊂ ∪Ln

i=1Q(xi, l
λ) ⊂ Q(x0, 2l).

Denote

T ∗
j,iaQ(x) =

∫
Rn

∫
Rn

ei⟨x−y,ξ⟩a(xi, ξ)ψ(2
−jξ)dξaQ(y)dy.

We can write∫
Rn

|T ∗
j aQ(x)|dx ≤

Ln∑
i=1

∫
Rn

|T ∗
j (aQχQ(xi,lλ))(x)|dx

≤
Ln∑
i=1

(∫
Rn

|T ∗
j (aQχQ(xi,lλ))(x)− T ∗

j,i(aQχQ(xi,lλ))(x)|dx+

∫
Rn

|T ∗
j,i(aQχQ(xi,lλ))(x)|dx

)
.

Using the similar method as Lemma 2.3 (p = 2) and Lemma 2.4 (p = 2), one can get∫
Rn

|T ∗
j (aQχQ(xi,lλ))(x)− T ∗

j,i(aQχQ(xi,lλ))(x)|dx . 2jδln(λ−1)+λ

and ∫
Rn

|T ∗
j,i(aQχQ(xi,lλ))(x)|dx . 2j

n
2
( n
2N

−1)l
nλ
2
( n
2N

−1)+n(1−λ),

which gives the desired estimate immediately. �

4. Conclusion

This paper has investigated the boundedness properties of pseudo-differential operators and

their adjoints on various function spaces. We established pointwise estimates involving the

sharp maximal function, which in turn yielded weighted Lp and Hardy space Hp (0 < p ≤ 1)

inequalities. A key improvement lies in extending the range of parameters ϱ, δ to the general case

0 ≤ ϱ ≤ 1, 0 ≤ δ < 1 and obtaining results for the adjoint operator T ∗
a , whose L

p theory differs

from that of Ta. For the Hardy space Hp, we introduced a generalized cancellation condition

to prove boundedness for a wider range of p than previously known. The results significantly

extend classical theorems proved by several authors providing a more complete picture of the

mapping properties for these operators in the Hörmander class.
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[1] Álvarez, J., Hounie, J., (1990), Estimates for the kernel and continuity properties of pseudo-differential

operators, Ark. Mat., 28(1), pp.1-22.
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[22] Journé, J., (2006), Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of

Calderón, Springer, 132p.

[23] Kenig, C., Staubach, W., (2007), Ψ-pseudo-differential operators and estimates for maximal oscillatory inte-

grals, Studia Math., 183, pp.249-258.

[24] Michalowski, N., Rule, D., Staubach, W., (2012), Weighted Lp boundedness of pseudo-differential operators

and applications, Canad. Math. Bull., 55(3), pp.555-570.



270 TWMS J. PURE APPL. MATH. V.16, N.2, 2025

[25] Michalowski, N., Rule, D., Staubach, W., (2010), Weighted norm inequalities for pseudo-pseudo-differential

operators defined by amplitudes, J. Funct. Anal., 258(12), pp.4183-4209.

[26] Miller, N., (1982), Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans.

Amer. Math. Soc., 269(1), pp. 91-109.

[27] Miyachi, A., (1981), On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 28(2), pp.

267-315.

[28] Miyachi, A., Yabuta, K., (1987), Sharp function estimates for pseudo-differential operators of class Sm
ϱ,δ, Bull.

Fac. Sci. Ibaraki Univ. Ser. A, 19, pp.15-30.

[29] Park, B., Tomita, N., (2024), Sharp maximal function estimates for linear and multilinear pseudo-differential

operators, J. Funct. Anal., pp. 110661.

[30] Park, J., (2019), Boundedness of pseudo-differential operators of type (0, 0) on Triebel-Lizorkin and Besov

spaces, Bull. London Math. Soc. 51(6), pp.1039-1060.

[31] Park, B., (2018), On the boundedness of pseudo-differential operators on Triebel-Lizorkin and Besov spaces,

J. Math. Anal. Appls, 461(1), pp.544-576.

[32] Park, B., Tomita, N., (2024), Sharp maximal function estimates for multilinear pseudo-differential operators

of type (0, 0), arXiv preprint arXiv:2405.02093.
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