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SHARP MAXIMAL FUNCTION ESTIMATES AND H? CONTINUITIES OF
PSEUDO-DIFFERENTIAL OPERATORS
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ABSTRACT. It is studied that pointwise estimates and continuities on Hardy spaces of the
pseudo-differential operators (PDOs for short) with the symbol in general Hérmander’s classes.
We get weighted weak-type (1, 1) estimate, weighted normal inequalities, (H?, H?) continuities
and (HP?, L?) continuities for the PDOs, where 0 < p < 1.
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1. INTRODUCTION

Let m e R, 0 < p,0 < 1. A symbol a(z,€) is said to be in the Hormander Syt class as given
in [21], if a(z,€) € C®(R™ x R?) with

|8£(‘9§‘a(m, &) < Caﬂ@)mfgla\%lﬁl’

for any multi-indices «, 8. The pseudo-differential operators with symbol a(z,§) is defined by
the formula

1

Taw) = G | a@ i) 1)

where 4 denotes the fourier transform of u. An important topic on the pseudo-differential
operators is to study the properties of these operators acting on some function spaces and
some pointwise estimates for them. LP regularity is a fundamental one which can be gotten by
the complex interpolation between L?-continuity and (L°, BMO)-continuity, see [12, 34, 35].
As we know, L?-continuity of the pseudo-differential operators is sharp in terms of its order
m < —§max{d — 0,0}, where 0 < o < 1and 0 < § < 1, see [20, 19]. However, it is not clear
if the (L°°, BMO)-continuity is sharp when 0 < ¢ < § < 1, see [23, 27]. On the one hand, if
a(x,§) € LSy with m < —5(1 — ), the pseudo-differential operators are bounded on L>(R")
23], which implies the (L°°, BM O)-continuity. Here, L*>°S}" denotes the rough Hérmander class
whose constituent a(z, &) obeys

Ha?a('a f)”Loo(]Rn) < Ca<§>m—@\al_

Clearly, the relation S;s C L>°S5;" holds for any m € R, 1 < 9,6 < 1. On the other hand, there
is a symbol a a € Sy}, such that T, dose not map L> to BMO if m > —%(1 — p), see [27].
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Recently, taking full advantage of the smooth of variate z, the author of the paper [40] prove
that if 0 < p<1,0<d < 1 and a(z,§) € S;g(l_g), the (L, BMO)-continuity of the pseudo-
differential operators Ty, is true, and clearly it is sharp. Moreover, the LP boundedness is studied

as well.
Theorem 1.1 (See [40]). Let 1 <p<o00,0<0<1,0<6<1 anda(x,§) € 5. If

1 1 max{d — 0,0}
< —n(l—p)=—-|—p 0O
m < = Q)|2 p‘ " max{p, 2}

)

then
| Toullr < llull e

~

Clearly, the range of m in [1, Theorem 3.4] is revised when 2 < p < oo and 0 < p < 0 < 1.
For the case 1 <p < oo and 0 < ¢ < p < 1, we refer to [20, 35, 38].
It is a pity that the main idea is inapplicable to its dual operators 7, which is defined by the

Tiue) = o [ et deuty. )

So, the (L*°, BMO) continuity of T, has been understood so far [1] only if
a(y,§) € S 2(1 o)~ 5 max{s= Q’O}. However, one can get (H!, L')-continuity of T} under the con-

formula

dition a(y, 5) € S 2( 2 (see Theorem 1.16). By complex interpolation, we have the following
result.

Theorem 1.2. Let 1 <p<o0,0<0<1,0<0<1anda(z,§) € S If

1 1 1
< —n(l—-o)|=—-~=| - o0 — 1— —
m< (L= o)ly — | nmax{d — 0,031~ o),
then

T3 ullze < Nullze-

In this paper, the properties of pseudo-differential operator acting on Hardy spaces HP(R™)
that is a right replacement for LP(R™) when 0 < p < 1, and some pointwise estimates for these
operators are investigated. Clearly, the LP(p # 2) continuity between Tj, and T is different
in terms of the order m. Based on this observation, both 7j and T will be considered in this
paper.

For the sake of narration, it is necessary to introduce some notations firstly. For a function
u € L} (R™), we define the Fefferman-Stein sharp maximal function and Hardy-Littlewood
maximal function by:

M*u(z) = sup inf — / lu(y) —cldy and Mu(x) = sup — / lu(y)|dy
zeQ © Q) z€Q Q)
respectively, where ¢ moves over all complex number, and @ containing x moves over all cubes
with its sides parallel to the coordinate axes. For € > 0, let us denote Mfu = (Mti(]uel))l/€ and
1

Mo = (M (Juc])) ",

The pointwise estimate of pseudo-differential operators in terms of M* and M are given by
many authors in [8, 22, 26, 27, 29, 39, 40]. We refer to [7, 4, 5] for the pointwise sparse bounds
of these operators. Here, one is apt to state a result given in [28].

Theorem 1.3 (see [28]). Let 1 <p<2,0<o< 5 ando<1. Ifac S;Z(l_g)/p, then
MH(Tof)(z) S Myf ().
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Clearly, there is a restriction on the range of p,d and p, that is 0 < o = 0 < £ with o < 1 and
p # 1. Recently, this restriction on p, § is extended to 0 < p =0 < 1in [29, 32] and to 0 < p < 1,
0 <4 <1 when p =2 in [40]. However, the case of 1 <p <2,0<9p<1,0<p<d<1and
p=10<p<1,0<d < 1seems to be not clear. Particularly, there is no corresponding result
in case p = 1, but a weaker version is obtained in [24].

Theorem 1.4 (See [24]). Let0<p<1,0<d<landl<p<oo. Ifae ng(?(l*g), then
MH(Tof)(z) S Myf ().

The first main result of this paper is a generalization of Theorem 1.3. And the operator T
is considered as well.

Theorem 1.5. Let0< p<1,0<d<1land1<p<2. Ifa€e S‘Q_g(l_g)/p, then

M¥(Tof)(x) S Myf ().

—2(1-0)—% max{d—p,0
IfaESQﬁp( o madamel)

, then
MH(T; f) () S My f(x).
The second main result of this paper is extending p in Theorem 1.4 to the extreme case p = 1.
Theorem 1.6. Let0< p<1,0<d<1and0<e<1. IfaeS,;"?, then
MET.f)(x) S Mf(x) and MET;f)(z) S Mf(z).

Interesting that the order of 7); in Theorem 1.5 seem to be improved when p = 1. It is not
clear that if the order of T} can be improved in the case 1 < p < 2. Another interesting thing

is that the second estimate holds with a € LOOS;TL(PQ) in case 0 < p < 1.
Theorem 1.7. Let 0 < p < 1. Ifa € Loosg”(l‘g) then
MA(T; f)(x) S M f(x).
As we know, the pointwise estimates can give some weighted LP inequalities. Recall that a

nonnegative locally integrable function w belongs to the class of Muckenhoupt A, weights if
there exists a constant C' > 0 such that

1 1 L p—1
sup (757 Jow(x)dx) (1757 |, w(x)-Pdx <(C, when 1< p < oc; (3)
OcRr (IQ\ fQ )(IQI fQ )
Mw(z) < Cw(xz) for almost all z € R”, when p=1. (4)
For p = oo, one can define Ay := Up>1A4,. The smallest constant appearing in (3) or (4) is

called the A, constant of w which is denoted by [w],. The usual notation that
Jull?, = / lu(z)[Pw(z)dr and [Jul|¥ . = sup Nw(z € R" : Ju(z)] > A)
« R~ @ A>0
will be adopted in this paper. The weighted LP estimates for pseudo-differential operators has
been a topic extensively studied, specially in the 1980s [1, 8, 22, 28], later improved in [24, 25]

in the late 2000s and revisited in [29, 40] recently.
Theorem 1.8 (See [40]). Let 0< 0<1,0<5<1,1<r <2 anda(z,€) € 5,7 "

w € A, withr <p <oo. Then, there is a constant C independent of a and u, such that
[Taullry, < Cllullze. (5)

. Suppose

p/T
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Theorem 1.8 is proved by some interpolations between r = 1 and r = 2. In this paper, a new
proof will be given.
By interpolation theory [6, Theorem 5.5.3] and the famous Fefferman-Stein’s inequalities [11],
we can write
[Meul| e < ”MEUHLZ? [ Meull gz < ”MEUHLZ’“’
for 0 < ¢€,p < 0o and w € Ay, Theorem 1.5, Theorem 1.6 and Theorem 1.7 lead to the following
weighted LP inequalities.

Theorem 1.9. Let 0 < p<1,0<d<land1 <r <2 Foranyr <p<oo (1<p< o0 if
r=1) andw € A, if a(z, f)ES -(1-9) , then
ITaulzz, < Cllullz,

‘ —L(1—g)—2 5—0,0
zfaeSM"( o)~ max{de }, then

1T5ullze, < Cllulls,-

Theorem 1.10. Let0 < p<1,0<d < 1. Foranyl <p < oo andw € Ap, zfa6595(1 Q),
then
[ Taullpy, < Cllullpz, and [|Tgullgy, < Cllul| s,

Forp=1 and w € A, zfaES n(1- g) then
IITaUIIL;w < Cllully, and [|Tgul| 1o < Cllullpy -

Theorem 1.11. Let 0 < o < 1. Forany 1 <p<oo andw € Ap, ifa € L”Sgn(kg), then
[Taull s, < Cllull e,

Forp=1andw € Ay, ifa € LOOSQ_n(l_g), then
1Tl e < Cluly.

The main contribution of these theorems, besides getting the weighted LP boundedness of T}
is extending the range of p,d to general case. Especially, the case p = r = 1 is considered as
well. Here, we would like to highlight potential directions for further research, such as extending
the study from LP spaces to Morrey spaces. For progress on Calderén-Zygmund operators (a
class of the PDOs) in Morrey spaces, we refer the reader to [10, 15, 16, 17] and the references
therein.

Another topic of this paper is to investigate some properties of pseudo-differential operator T,
and its dual operators T, acting on Hardy spaces HP(R"™), where 0 < p < 1. The first property
is (HP, HP) continuity, which can go back to the studies [2, 3]. They introduce strongly singular
Calderén-Zygmund operators T and prove the operators T satisfying 77 (1) = 0 acts continuously
on HP(R™) for pp < p < 1. As an application, they point out that the pseudo-differential
operators T, with symbols in 5’ 2(1 2
operators, where 0 < § < p < 1. Later in [1] the authors extend the range of o and 4 to more

(1 0)— T max{§—
general case, that is, 0 < o< land 0<d <1, but a € Sg 52(1 o)~ max{ Q’O}.

are included in strongly singular Calderén-Zygmund

Theorem 1.12 (See [1]). Let 0 < ¢ <1,0<6 <1 and a(z,§) € S7'5. If

m < —2(1—¢) - 5 max{s - 0,0}
and T} (1) = 0 in the sense of BMO. Then, T, maps continuously HP into itself for po < p <1,
1 _ 1, 5(1-0(/e+n/2)

where 30 =5+ Sa/e 11202
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The approach to prove this theorem is applying the atomic and molecular characterization of
HP(R™). The advantage of this approach is that one only needs to show that Thag, the image
of a (p,2) atom ag, is a suitable molecule. The condition that 7 (1) = 0 is used only to provide
the cancellation condition of the molecule, that is, [p, Taag(x)dx = 0, at cost of restricting the
range of p into pg < p < 1. So, the higher degree of cancellation, namely,

T:(x) =0, for rasw;m, (6)

is required to extend for p below py. Here and below, [z] indicates the integer part of z. See
[13, 18, 37] for the case of Calderén-Zygmund operators. Notice that (6) is used only to provide
Jgn ©¥Thaq(x)dz = 0 for o] < [n(}l7 — 1)]. So, we use the following condition instead of (6) in
this paper as:

Definition 1.1. Let 0 < p < 1, t € Nt U{0}, T be a operator and L2 ,(R"™) denote the set of
functions in L2(R™) such that [, «° f(z)dz = 0 for |B| < t. If f € L2,(R™), then

[ @ TH@de =0, for lal < n(; - 1), (7)

Here, L?(R™) denotes the set of functions in L*(R™) with compact support.

As we known, for the atomic decomposition of an element of HP(R™), one can always choose
(p,2) atoms with an number of additional vanishing moments that is known as (p,2,t) atoms
with ¢ > [n(%—l)} (see [35]). Clearly, if f is a (p,2,t) atom, then f € LZ,(R") with ¢ > [n(%—l)].
Moreover, the proof of Proposition 3.1 below implies that (7) for both T, and T} are well defined,

where the symbol a is given in Theorem 1.13.
Theorem 1.13. Let0<p<1,0<p<1and0 << 1.

(1) If T} defined as (2) satisfies condition (7) and a € S;;
T is bounded on HP(R™).

(2) If T, defined as (1) satisfies condition (7) and a € S;;
the operator Ty, is bounded on HP(R™).

(1-o) (L~

)

NG

Then, the operator

(1-0)(;—3)— 5 max(0,0—¢)

Compared with Theorem 1.12, Theorem 1.13 extend p below pg and improve the range of m.
The second property investigated in this paper is (HP, LP) continuity of pseudo-differential
operators, which can go back to the results of the papers [11] and [9] for p = 1, which is extended
to the case 0 < p <1 as given in [33].
-n(l-0)(+—3)
Theorem 1.14 (See [33]). Let0 <p<land0<d<po<1 Ifa€S,; r
operators Ty, defined as (1) is bounded from HP(R™) to LP(R™).

. Then, the

Actually, the authors of the paper [33] get that Tj, is continuously h, into itself. Here, h,
denotes the local Hardy spaces introduced in [14]. We also refer to [30, 31] for the extension
to Triebel-Lizorkin spaces that coincident with the local Hardy spaces for some special index.
Theorem 1.14 holds because of the fact H? C h? C LP for 0 < p < oco. As we see, the case
0 < p <6 < 1isnot considered in Theorem 1.14. And this case is considered in [1] later.

Theorem 1.15 (In [1]). Let0 < p < 1,0 < ¢ < 1 and py given as Theorem 1.12 (it is understood
that for o =1, po =n/(n+1)). Ifa € Sg_f(l_g)_fmax(o’é—g). Then, the operators T, defined as
in (1) is bounded from HP(R™) to LP(R™) forpo < p <1, when 0 < p <1, and for pp < p <1,

when o = 1.
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Compared with Theorem 1.14, Theorem 1.15 relaxes the range of p,d, but put a restriction
on p and the order of T,. Both of them do not contain the case o =0, 0 < § < 1. In this paper,
we prove the following result.

Theorem 1.16. Let 0 <p<1,0<p<1and0<4d < 1.

(1) (o1
(1) Ifa € 5’95(1 26 2). Then, the operators T, defined as (2) is bounded from HP(R™) to

LP(R™).
—n(1-0)(3;—3)— %5 max(0,6—0) ‘
(2) Ifa € S,6 r . Then, the operators T, defined as (1) is bounded from
HP(R™) to LP(R™).

2. THE PROOF OF POINTWISE ESTIMATE FOR THE SHARP MAXIMAL FUNCTION

Let us denote

1 . 1 ,

K@) = iz [ e ala,d and Kooy = 5o [ e rdaoae. (8)
Then, T, and T}, can be written as:

Tou(r) = A K(z,y)u(y)dy and T,u(x)= A K*(z,y)u(y)dy 9)

respectively. Now, we introduce the standard Littlewood-Paley partition of unity. Let C' > 1 be
a constant. Set E_1 = {£:]¢| <2C}, E; ={£: 07127 > |¢| < C27H1}, j=0,1,2,---.

Lemma 2.1. There exist 9_1(§), ¢ (&) € C§°, such that

(1) supp ¥ C Ey, supp —1 C E_y;
(2) 0<yY <1,0< ¢4 <1
o0

3) a(6)+ T v = 1.
j=
By Lemma 2.1, the symbol a(z, &) can been written as:
a(z,8) = a(z, ) (Y-1(&) + Y_v(27E)) = > a;(z,9).
j=1 J=0

Consequently, the operator T}, and T can been decomposed as:

Tou(z) =Y Tju(r) and Tyu(z) =Y Tru(), (10)
§=0 §=0
respectively, where
. 1 il
Tiju(x) = . Kj(z,y)u(y)dy with Kj(z,y)= (271_)”/ el y’@aj(x,f)dg, (11)
1 .
Tu(x) = K!(z,y)u(y)dy with K (z,y)= / T8 q . (y, £)dE. 12
Fu(z) - i (@ y)uly)dy i (@) B0 Jon i(y, §)d¢ (12)
Lemma 2.2. Let 0< 0<1,0< <1 and a(z,§) € S75. If 1 <p<2<q<ooand
1 1
m<-n(-—-)—— max{d — 0,0},
(p q) { ¥

then
|Toullre < llulle and [|T5ullpe S [jullze-
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By Hardy-Littlewood-Sobolev estimate and L?-estimate for pseudo-differential operators, in
[1] the authors proved the first inequality in the case of 0 < ¢ < 1. The case o = 0 and the
second inequality can been obtained by the same way.

Lemma 2.3. Let Q(xo,l) be a fized cube with side length | < 1. Suppose 0 < p<1,0<d< 1
—2(1-0)
D

and 1 < p < 2. For any positive integer j satisfying 271 < 1, if a(z,&) € 5'975 , then
[l ) = Koy S 2 Myutan). Vo € Qe (13)
if a(z,§) €5, 7( o) maxo- 970}, then
/n ()| K (,y) — K (2, 9)ldy S 21Myulwo),  Va,z € Q(zo,1). (14)

Proof. The idea behind the proof of (13) is standard which could be found in [8]. So, we omit it
here. However, to prove (14), this method has to be modified since the Parseval’s identity can
not be used directly. Firstly, the integrand of left side of (14) can be bounded by:

[l [ (e ay . e (15)

Break up this integrand as follows

+/
/yﬂcoS2j‘-’+1 |y—zo|>2-Jet1

Holder’s inequality show that the first term is bounded by:

1
7

</yxo<2—j9+1‘ ) |pdy> </n /n Hv8a;(y, &) (x — 2) - €dgfP dy) ) (16)

where 55 denotes some point between x and z. For any fixed x and z, let b;(y,§) = a;(Z —
1 1
Y, 5)\§| (1-0)=n(z =) and g]( )=1¢ * (1=0)+n(3- ’)Xj(g)(x — z)-&. Then, we can write

/n 1W8a;(7 —y,&)(x — 2) - £d€ = Ty, g;(y).-

n(4—1)~2 max{5—0,0}

Notice that b; € 5’;5 , by Lemma 2.2 we have

175,95l 1o < Nlgslicz = [l z2-
Therefore, the formula given in (16) is bounded by
27 I Myu(xo).

By Hélder’s inequality, integrating by parts and the fact that |y — xo| ~ |y — z| follows from
271 < 1, x € Q(x0,1) and |y — x| > 2779F! the second term is bounded by:

1
u(y)|P P
[ )l
ly—zo|>2—de+1 |y - $0|p
1

<5 (1] e oo o -2 acay) 7

laj=N
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—

For any fixed x and z, let l;j(y,ﬁ) = 8g(aj(y,§)(x —z)- §)|§]%(1_@)_n(%_ﬁ)+gla‘ and g;(§) =

n 1 1
]§|75(179)+n(57?)79|a‘)@({). Then, we can write

/n WO (ay(& — 9, ) (x — 2) - €)dE = Ty G (v).

(%—i — 5 max{d—p,0}

Clearly, l;j € SQ_; with bounds < 27]. Moreover, by Lemma 2.2 we have

1T Gill L < 2051 22 = 271195 12-
By a simple calculation, we can get the expression given in (17) is bounded by
< 21 Mpu(wo).
Thus, the following desired estimate can be provided. O

Lemma 2.4. Let Q(xo,l) be a fized cube with side length I < 10 < o <1 and 0 < 9§ <

n

, 1
1. For any positive integer N > > and any positive integer j with 171 < 29 < "¢, if a €
— 3 (1—0)— 5 max{6—p,0}

S, & , then

@/Q(zo,l) |Tju(z)|de < Zj%(ﬁ_l)l%(ﬁ_l)Mpu(ﬂfo) (18)
and

@ oy Tut@llde S 275 (N D13 (3570 Myu(ao). (19)

. 1 .
Remark 2.1. If p = 0, the condition I~ < 27 <[ is interpreted as ™' < 27. If p = 1, this
lemma is no use.

. —n(2-1)—2 max{6—0,0 i1V (i_1
Proof. Notice that a(z, )y (277¢) € 5’975(” 2) 7y maxiome }Withthebounds,SQ i3 A-0tn(—3),

So, T} is bounded from L” to L?, see Lemma 2.2. More exactly, we have

in(q_ 11
I Zullpe 2777 7O .
Let integral N defined as above and set

T — lﬁgj(ﬁ—@)7

u1 () = u(T)XQ@oar)(¥) and  uz(z) = u(z) — ui(), (20)

where X (a,,47)(7) is the characteristic function of the ball Q(zo,47). Then, the left hand of
(18) can be bounded by:

/ |Tjuqi(x)|dx + / |Tjus(x)|dx =: My + M.
Q(zo,l) Q(zo,l)

Hoélder’s inequality and (p, 2)-boundedness of Tj imply that M; is bounded by:
o T P

2j%(NLp_1)l%(NLp+l)Mpu(m0)' 2y

2| T e S
S
For M, noticing that for any x € Q(zo,!) and any y € Q (¢, 4T, we have
ly — xo|

— >
ly — x| > 5
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1
Y

3=

Hélder’s inequality, integrating by parts and Parseval’s identity give that |Tjuz(z)| is bounded
by
u p / o o ’
[ M) ([l [ deate gue e ay
ly—xo|>4T ly — zo ly—zo|>4T R

</|y:vo|>4T |?/|i(i()J||pN dy>; (/R” |8?a(x’§)¢(2j§)‘pd§>;

5 2j%(Np )l2( )M’u(l‘o)
So
e /Q( | Ta@lde £ 23T (). (22)
Z0,

Thus, the desired estimate (18) follows from (21) and (22). So, we complete the proof. O

Lemma 2.5. Let Q(xo,l) be a fized cube with side length I < 1. Suppose 0 < p < § < 1,
_n(1_
a € SQ g’( Q). Then for any 1 < A < %, any positive integer N > % and any positive integer j

. 1
with 72 < 27 < [ e, we have

n

1 . ynn nacn_ _
\Qr/ Tyu(z)de < (2999 + 275015 WD) Myu(ap).
Z0,

Proof. f 1 < A < é, then [* < [. Take integer L such that it is the first number no less than
', that is L — 1 < I'= < L. Then, there are L™ cubes with the same side length I* covering
Q(x0,1). Moreover, we have

Q(wo,1) C UL, Q(x4, 1) C Q(x0,21).
Clearly, L™ < 2""(1=Y_ Denote

Do) = [ @9a(e, Qg (23)

We can write

o
— |T;u(x)|dx
‘Q’ Q(zo0,l) ! ( ’

< |Q|Z( ) =T s [ male). e

Now, we claim that
| Tyu(e) — Tau(x)| S |z — |2’ Myu(zo), (25)
/ Ty u(e)de < 2302 @4 A (ag). (26)
Q(z4,1*)
Since L™ < 2"™1=) we can get the desired estimate by substituting both (25) and (26) into
(24).
Note that |Tju(x) — T} ;u(z)| is bounded by:

Ll [ 9 (ot ) - atwi, ) w27 deldy

Then, (25) follows from the same argument as (36).
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(i1
Now, we will prove (26). For fixed z;, we can see that a(z;, &) (277¢€) € SQ’O(” ) with the
1
3

bounds < 2_j%(1_9)+n(% ), So, T} ; is bounded from LP to L?. More exactly, we have

1Tyl 2 5 279507062 .
Fix positive integral N large enough and set
T = 5%23'(%79)7
uin(z) = U(l“)XQ(miAT) () and wu;2(x) =u(x) — uia(z), (27)

where X (s, 47)(2) is the characteristic function of the ball Q(x;,4T'). Then, (26) follows from
the same argument as (18).
If A =1, we define

Tiu(@) = [ &9a(ao, U@ IOaE)ds (28)

Then, the desired estimate can be obtained by the same argument as above with Tj ;u replaced
by T} ou. So, the proof is completed. O

We remark that the same result holds for the case ¢ = 0. Here, the range of A can be extended
o [1,00). However, to make some sums convergent, A has to be confined to a finite range.

Lemma 2.6. Let Q(x0,1) be a ﬁxed cube with side length | < 1. Suppose o =0, 0 < § < 1,
a € S() 5”, then for any 1 <A< ( 5y, any positive integer N > and any positive integer j

with 7 <29 <1 p(l—é)
|Q’/ Tu(@)lde < (290 + 23018 D) Mu(ao).
33'07

Lemma 2.7. Let Q(xzo,l) be a fized cube with side length I < 1. Suppose 1 < p < 2, o = 0,

n

0<éd<1,ac 50_6;, then for any positive integer N > > and any positive integer j with
l*p<1275) < Qj,

IQI/ ) Tju(e)lde < 2772070 07N My ().
ZE07

Proof. Denote
=2/ =N,
Set us(r) = u(2)XQ(x,2r)(*) and us(x) = u(x) — uz(z). Then
1
Tju(x)|dx < Tu dr + — Tiuy(x)|dz. 29
|Q|/ a;o,l)| @) 1Q] Q(zo.) Tjea(@)l ’Q| Q(zo.) Tjua()] (29)
(l_l _n

é -n
Notice that a(z, &)y(277¢) € S 2727 with bounds < 2773(1=9)_ Hglder’s inequality and
the LP-estimate of T} give that

1 - n _n - n _n_n
@\/Q\Tju:a(x)rda: < 27500 Byl S 277509055 Myu(ao)

o IO 2050 01 (). (30)
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Notice that I' > I. We have |y — z| ~ |y — x| for Vo € Q(zo,1) and Vy € Q% (xo,2T). So,
direct computations show that

Tjua(z)] < / K, 2 — )l [u(y)ldy < T Myu(wo)
|ly—zo|>2T
2—3‘%(1—5)(1—p%)l—%(1—pLN)Mpu(x0)’
which implies that

1 a1 _ny _n/__n_
@\/ | Tus(a)lde 52 U0 708 My (o). (31)

Clearly, the desired estimate follows from (29), (30) and (31). O

Taking I' = [ in the proof Lemma 2.7, we can get a similar result for ¢ > 0 with the same
argument as above.

Lemma 2.8. Let Q(xo,1) be a fized cube with side length | < 1. Suppose 0 < p<1,0<4d <1
1 .
and 1 < p < 2. For any positive integer N > % and any positive integer j with [ e < 27 4f

a € 5'_;( o then

w«lﬂ Tu(e)lde < (279(30-0-Fmax{o—e0h) | 9ol =N =N np ()
Q(=o,l)
and
\Qll Tru(a)de < (279G O-0=3maxti=eo}) 4 9=3eG=N 5N pp oy (a);
Q(zo,l)

Proof of Theorem 1.5. Without loss of generality, we assume that the symbol a(x,&) vanishes
for |£] < 1. Let @ = Q(x0,!) denote the cube centered at x¢ with the side length I. For any fixed
cube @), we are going to prove that

@ /Q (Tou(z) — Coldz < CMyu(ao), (32)

where Cg = ﬁ fQT u(y)dy. The proof is trivial for [ > 1, we omit it here. We consider on
0 <1 < 1. Note that the left hand of (32) can be controlled by:

|Q’2//|Tu — Tu(y)|dydz. (33)

We compose the operator T, as (10), then estimate (33) by

S gp e TG+ S o [ im0

1<2i<]—1 1=1<2i

Lemma 2.3 implies that
[Tju(z) = Tju(z)| < /R WK (2, y) — K;(z,9)ldy < C2 |z — 2| Myu(wo).
So, the first term in (34) is bounded by

Mpu(zo)l > 29 < Myu(xo). (35)

1<2i<]~1

Next, we claim that the second term in (34) can be controlled by Myu(zg) as well.
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Case 1. 0<0<p<1,§#11If p=0, then by Lemma 2.4 and Remark 2.1 the second term
in (34) can be bounded by:
Z 2j%(NLP_1)l%(NLP_1)Mpu(xO) < Mpu(xo).
1—1<2i
If o # 0, we break up this sum as follows

2 2
> @/Q’Tju(x)‘dx—i— Z @’/Qﬂ}u(x)\d:c. (36)

l*1<2j§l*% I e<2i
Then, Lemma 2.4 and Lemma 2.8 imply that they can be controlled by
S oI (e
l—1<2j§l_%
by (2tEama-gmaxts-eod) 49 IeGNE N M) < Myu(o).
l*é<2ﬂ'
Case 2. 0 < p<d <1If p#0, we break up this sum as (36) as well. By Lemma 2.8, the
second term in (36) can be controlled by Myu(xo). For the first term in (36), we write

3 @2|/Q|Tju(az)]dx:( )OREETED SN

.1 o1 1 _ 1 1 _ 1
1=1<2i<] @ 71<2i<i™s |75 <2i<] 52 1 oF—T <oi<] ok

1
+ ..+ ) — |Tju(x)|d,
B 2 L @ oo
I 671 <2i<min{l” ¢, 37}
where ~ is the first positive integer such that 6% > %. Then, take A = 5%, =0,1,...,vy—1in

Lemma 2.5 respectively, we can see that each sum above is bounded by M,u(zg). Therefore, we
have

2
> g [T < ¢ M), (37)
_1 Q@
1-1<2i<] e
If o = 0, we break up this sum as follows

_ __2
—1<2i<] p(1=9) 1 p(1-3) «2J

Applying Lemma 2.6 and Lemma 2.7 instead of Lemma 2.8 and Lemma 2.5, we can get the
desired estimate by the same argument as above. So, the proof is finished.
O

Next, we started to prepare for proving the case p = 1, that is, Theorem 1.6 and Theorem
1.7.

Lemma 2.9. Let Q(xo,l) be a fized cube with side length | < 1. Suppose 0 < o < 1 and
0 < < 1. For any positive integer j satisfying 21 < 1, if a(x, &) € 5’;?(1_9), then
[ ;) = Ky ldy S 21Muao). o,z € Qlan ) (39)
Rn
and

/Rn ()| (2,y) = K (2, y)ldy S 21Mu(zo), Vz,z € Q(zo,1). (40)



G.Q. WANG: SHARP MAXIMAL FUNCTION ESTIMATES AND HP CONTINUITIES ... 257

Proof. The proof of (39) and (40) is standard. We only show a outline of proving (40). The
integrand of left side of (40) can be bounded by:

/ru ) / (eMr0€) _ ¢it=v9)) 0y, €)de|dy. (41)

Break up this integrand as follows

‘y—ajo‘SQ*jEH’l |y_‘130|>27j9+1

A direct calculation gives the first term is bounded by 2/IMu(zo), and integration by parts with
respect to the variable ¢ yields that the second term has the same bound. Thus, the proof is
completed. O

Remark 2.2. Notice that the smooth of variable y in a(y,§) is not used in the proof of (40).
So, it can be get in a relazed condition. More exactly, (40) can been obtained under condition

oo a—n(1—
a(y, €) € LS, 79,
Lemma 2.10. Let Q(xo,l) be a fixred cube with side length I < 1. Suppose 0<o0<1and

0<éd<1. For any posztwe integer j with 71 < 27 <[~ ¢ ,ifa € 5'95( ~o)~ g max{d- go}

TAIE] fla)lde < 2775173 .
|Q(a:0,l |/Q(W) T f(x)lde < 2 M f(x); (42)

ifa € S n(1-0) then
_
’Q($07l)| Q(xo,l)

Proof. Firstly, we will prove (42). Holder’s inequality and Minkowski’s inequality implies that
the left hand in (42) can be bounded by:

T f(z)lde < 279207 % M f(ap). (43)

J. </| - |<Z‘Kj<’%y>\2dw> £()ldy.

/n </, <Z’Kj($7y)’2dx> FWldy S 2793 Mf(ao).

Break up the integral with respect to the variable y as follows
/ + / . (44)
ly—zo|<2—ie+1 ly—zo|>2-de+1
Let cj(z,&) = a;(x,€)[€"179) and h; ( ) = €717 x;(€). Then, we can write

Ki(e) = [ a0 = [ 19, Oy OdE = T, by ).

So, the first term in (44) can be written as

[ /R T — )P) 110y
Yy—To —Jjo+1 n

Notice ¢; € S 2 max{6=0.0} . Moreover, T; is bounded on L?. So, it can be bounded by

/ 1 w)ldy( / i (€)Pdg)F < 279% M f(ao).
ly—wo|<2-det1 Rn

w3

-

So, it suffices to show
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Now, we will estimate the second term in (44) For positive integer N > n, denote ¢;j(x,&) =

8évaj(x,§)]£\”(1*9)+9]v and h;(€) = [¢|7"(1-0)=eNy(£). Then, we can write
1 o
/ eile y’@(‘)évaj(az,f)df —

|z —y|N
So, the second term in (44) can be written as

1 ~ 1
—T: hi(x — 2dx) 2 dvy.
/||( /|x—x0|<z‘\y—ff\N (e — y)2da) 1 ()ldy

Notice that |y —z| ~ |y — 0| for any |z — x| < [ and |y — x| > 277¢"1 > 2. Then, it is bounded
by

1 ~

Kj(xz,y) = ~ e hj(z —y).

|z — |

[l e = Pan) G
ly R

—zo|>2-dett |y — 2oV

2 max{0= Q’O}. So, L? boundedness of T, gives that it has bound

/| |>2-iet+l \y—xO\N’f( )]dy(/R Z i(€)] d{)% 2772 M f (o).

For (43), it can be provided by the same argument as above with L? boundedness of pseudo-
differential operators replaced by Parseval’s identity. So, the proof is completed. [l

Clearly, ¢; € S

We remark that there is no use for the smoothness of variable y of a(y, {) when we prove (43).
So, the condition on a(y, &) can be relaxed. More exactly, have the following results

Lemma 2.11. Let Q(xo,l) be a ﬁxed cube with side length | < 1. Suppose 0 < o < 1. For any
positive integer j with |71 <29 <17 %, ifa € L®S, n(1=0) then
1
|Q(z0,1)] Q(zo,l)
Lemma 2.12. Let Q(xo,l) be a fixed cube with side length | < 1 Suppose 0 < p < § < 1. For
forany 1 < A § and any positive integer j with 17 < 29 <1~ ¢ ,ifa e S n1-0) then

T f(z)lde < 279207 % M f(xo). (45)

G / Tif@)lde S (129 +1-%279%) M f(wo).

Proof. The proof can be completed by a similar argument as in the proof of Lemma 2.5. Using
the notations in them, one can write

1
— T; d
’Q| Q(:po, ‘ ]f($)| L

< - Q‘z( Lo @) = Tias @l [

(2]

T3f@)lde ).
It is easy to get

T f () = T f ()] S 127°M f (x0)

and
/Q( X Tyif(2)|de < 27950 M f(wo).

Recall L™ < 27"(1-Y) the desired estimate can be obtained immediately. O
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Applying weak (1,1) estimate for T; and Kolmogorov’s inequality instead of LP estimate in
the proof Lemma 2.8, we can get a similar result for ¢ > 0.

Lemma 2.13. Let Q(xo,l) be a fizved cube with side length | < 1. Suppose 0 < p<1,0<d <1

1 .
and 0 < € < 1. For any positive integer N > n and any positive integer j with [ ¢ < 27, 4f
ae S M9 yhep

0,0

1

o o )\Tju(a;)\edxg (2~ (3 (1=0)—5 max{d—g,0})e 4 9—jo(n—N)ejn—N)e Y (Mu(xo))* (46)
zo,l

and
|Q|/ Tru(e)|fde < (279300 F maxto—e0De | 9=seli=N)epn—N) (Mfu (o))", (47)
$0,

Proof of Theorem 1.6. Without loss of generality, we assume that the symbol a(x,&) vanishes
for |£] < 1. Let @ = Q(x0,!) denote the cube centered at x¢ with the side length I. For any fixed
cube @), we are going to prove that

1 €
— u(x)|€ — dax < u(x
|Q|/Qr|:fa (@) — |Colldx < (Mu(xo))",

where Cg = @ﬂ fQ Tou(y)dy. Notice that ||a| — |b|] < |a —b|¢, 0 < € < 1, it suffices to prove

1 € €
@ /Q |Tau(m) — CQ‘ dx 5 (M’U,(xo)) . (48)

Clearly, the left hand integral in (48) for any 0 < € < 1 can be bounded by

ZIQP/ / [ Tyu(z) — Tyu(y)|dydz.

Then, by the same argument as the proof Theorem 1.6, we can get the desired estimate. U

Proof of Theorem 1.7. We give a outline here, since it can be proved by a similar argument as
above. Clearly, it suffices to show

2
—— T u(x) — T u(y)|dyde < Mu(zg).
Zj: Q2 /Q/Q J J 0

For the case [ < 1. Break up this sum as follows

DTS SRS

27 <1

1
1-1<2i<]™e  |Te<2i

Then, we can get the desired estimate for the first term (27 < [~!) and the second term (17! <

. 1 1 .
27 <[ e) by Remark 2.2 and Lemma 2.11 respectively. As for the last term (I” ¢ < 27) and the
case [ > 1, it can be estimated by following lemma. So, the proof is completed. Il

Lemma 2.14. Suppose 0 < o < 1. For any positive integer N > n, if a € L”S;n(lfg) then for
0<0<g(l—o)

@/ T u(a)|da S (279G 17070 4 g=dem=N)m=N)) Ay (). (49)
Z0,
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Proof. We show an outline here. Set u5(x) = u(7)XQ(zo,21)(z) and ug(z) = u(x) — us(z). Then

1 1 1

— |T u(x)|de < — | T us(z)|de + — | T ug () |d. (50)
Ql Jo@oy 1Ql Jo@oy Ql Jo@oy
Notice that a;(y,§) € S;(?(l_g)_e with bounds < 2795(1-9+30 The Ll estimate of T} given
that

1 n )

\Q|/ T us ()| de S 2792070 Mu(a). (51)
Q

Notice that |y — x| ~ |y — x| for Yo € Q(w0,1) and Yy € Q% (z0,21). So, integrating by parts
gives that

T} ue ()| < 2772 =00 =N Mu(a). (52)

Clearly, the desired estimate follows from (50), (51) and (52). O

3. THE PROOF OF CONTINUITY ON HARDY SPACES

A tempered distribution f belongs to Hardy spaces HP(R™) if, for some ¢ € & with fR" o(x)dx #
0, the maximal operator

Mg f(x) :=sup|f * ¢(x)]
t>0

is in LP(R™), where ¢(x) = t~"¢(x/t). The continuity properties of pseudo-differential operator
T, and operators T acting on Hardy spaces HP(R™) will be done by standard atomic and
molecular technique [36].

Definition 3.1. Let 0 < p <1 < q < o0, p # q, and the nonnegative integer s > [n(% -1]. 4
function a(x) € LY(R™) is called a (p,q,s) atom with the center at xy, if it satisfies the following
conditions:

(1) sumag €@ ) [ JagWl <101 (@) [ aglydy=0.0< o] <

Definition 3.2. (See [36]) Let 0 < p < 1 < q < o0, p # q, and the nonnegative integer
s> [n(% —1)], € > max{Z, % —1}ap=1—- % +eandby=1— % +e. A (p,q,s,€) molecule center
at xg is a function M such that M(z) € LY(R™) and |z["° M (z) € LI(R™) satisfying:

(1) 1M I - o™ |75 < 005 (2) " M(z)zdr = 0,0 < |af < s.

To prove Theorem 1.13, it suffices to show the followings.

Proposition 3.1. Let ag be a (p,2,2t) atom with 0 < p <1 and t be an even integer t > %.
(1) If T} defined as in (2) satisfies condition (1) in Theorem 1.13. Then, T ag is a

(p, 1, [n(% —1)], £ — 1) molecule.
(2) IfT, defined as in (1) satisfies condition (2) in Theorem 1.13. Then, Tgaq is a (p, 1, [n(%—
D], L — 1) molecule.

Lemma 3.1. Let 0 <p <1, t > [n(% —1)] and agq is a (p,2,2t)-atom with the center at the
origin and Q = Q(0,1) is a cube on which ag is supported. Suppose 0 < 1 < 1,0 < p <1



G.Q. WANG: SHARP MAXIMAL FUNCTION ESTIMATES AND HP CONTINUITIES ... 261

and 0 < 6 < 1. For any positive integer j with 29 < I~ and any positive integer 2N1 > 5, if

n(1-0)(1~1)

a € 5’;5 then

gin(si (=D o= +0-3) (7 G-H+0-D). (53)

A

[ 175 a0(@)1da

/ [T ag ()| "da S 2jqn(ﬁ(§—%)+9(;—5)+(1—%))+th(1—@)lqn(ﬁ(é—%)ﬂl—%))+qt‘ (54)
Rn

Proof. Firstly, we will prove (53). Denote
T = [7igimg e

and break up the integral with respect to the variable x as follows

/|z|§2T " /|:Jc>2T ' (55)

Next, we show that both of them are bounded by the right hand in 53. Hoélder’s inequality and
Minkowski’s inequality show that the first integral in (55) is bounded by:

q ; 1 q
T"“a)( [ e[ 1] emy’@a(y,s)dgﬁdx)zdy) .
Q(O,l) R™ n

Recall that ag is a (p,2,2t)-atom and T' = lﬁyﬁ_]’g. Then, the desired estimate can be
provided Parseval’s identity.

Next, we estimate the second integral in (55). Integrating by parts gives that for any multi-
index a with |a| = Ny

/ei@,ﬁ)/ 6_i<y’§>aj(y,§)aQ(y)dydf
oY /R ile8) /R W (Ag) (a(y, €)) 5> ag (y)dyde.

|| +|az|=|al
For any fixed £ € R", let P: be the Taylor polynomial in y of degree t — 2|ay| — 1 of
e P (Ne)* (a;(y,€))

about the origin. Then

[ 90 0. 9)s* aow)dy
= [ 07006~ PO ao()dy

= ) / eI (9 (8e)*) (a5(5,€))y* P ag(y)dy,
1B11+182l=18]
where |3] =t — 2|a1| and ¥ is a point around the origin. Therefore, we can write

1
Tiagl) = pmw D >

lat|+|az|=|al |Bi]+|B2|=|8]

x / ) / el (9 (D)) (a5, €))y* g (y)dedy. (56)
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By Hélder’s inequality and Minkowski’s inequality, the second integral in (55) is bounded by:

S oos ([ k)

laa|+|az|=|al |B1|+]|B2]|=|8]
L q
x ( / lag(y) / / =) B aﬁQ(A@“Z)(aj<y,£>)y2m+ﬁd§rzdx)zdy).

Recall that ag is a (p,2,2t)-atom and T = ZWQjW_jQ. Then, the desired estimate can be
obtained Parseval’s identity.

The main idea to prove (54) is writing ‘l’|t‘TjaQ($)| as sum of T* first, then following the
same method as above to estimate these operator. To this end, we fixed |a| = £ in (56) and
give a clear relationship between y and y. We can write

e WL (Ae)* (a;(y, )
_ ! _ p\t—2]as| 2a—2ag ,—i(-,&) az (. 200—2an
= R+ G [ (- oy (G et (4 0, ©) ) @ .

The cancellation condition of ag gives

1
2" Tag(z) = G0 > (1—g)i—2le2l )"
0 |81 1+182]=18]

/ . / . TR (D2 (1e)*2) (aj(8y, £))y** g (y)dédydd,

lat|+|az|=|a|

where 8| = t = 2|an|. Denote ajp,4,(y,€) = €7(952(A)*) (a5(y,€)) and fay 5.0(y) =
y?“1+8a5(y). Then

1
2| Trag(x) = G Y. / (1—oy2elo N7 (T, L fars.(0:)(2)d6,

lar|+lazl=la] *© |81 |+182|=18]

Moreover,

|t < (% IR

|la1|+|az|=|a|

<X (I, o) @) i) 60

|B11+B21=|B]

1—0) (1 =1y4¢(1—
Notice that a; 5, 3, € SM( o)(;—3)+t(1-0)

114t
satisties suppfa, 5.0 C Qs Jgn |farp0(@)dz < QI and [gu farp.0(y)y*dy = 0,0 < |of <
t, since aq is a (p, 2,2t) atom.

with its normal independent of j, 51, B2 and f, g,0(x)

By the same argument as (53), we can get
: t 1 1 1 1 1 .
/ |(TC>:J oo fal,@Q(e')) (:C)|qdl‘ 5 eanan(m(g‘i)"‘@(;‘g)"‘(l_;))+J‘1t(1_9)
R™ oL
o (e G-DHa-D) et

By substituting this into (57), the desired estimate can be provided immediately, since that
fol(l — )t=2le2ldh < 1 is always true for 2|aq| < t. 0
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Lemma 3.2. Let Q(0,1) be a fized cube with side length I < 1. Suppose 0<g<2 0<p< 1

1—p)(L1_1
0<o0o<1and0<6é<1. For any positive integer j with [71 < 27 < [ e zfaeSg(s( oG )

then
| Tagds 5 G0 wo, (58)
R'n
/ |."L‘|qt|7—;kaQ($)|qdllI 5 2jqn(g(%—6)+(1—f))—thglqn(l—%)‘ (59)
]Rn
Proof. Firstly, we will prove (58). Break up the integral with respect to the variable x as follows

/ + / : (60)
|z|<2—detl |z|>2—detl

Holder’s inequality and Parseval’s identity show that the first integral in (60) is bounded by:
-4
(/ ) (/ oo et ey drc) (61)
|z|<2-7e n (0,l) JR?
. 1
< gimeli=g >( L daaI([ 1] eerdap,odePa)ta )
Q(0,0) "

S 2‘]'”9“‘3)( /Q O] | o opa)ta )

< g-ime(=§)+ja(-n(1-0)(;—3)+3) ja(n—%)

By Hoélder’s inequality, integrating by parts, Parseval’s identity and the fact |z| ~ |z — y]
follows from [ < 1, y € Q(0,1) and |x| > 277971, The second integral in (60) is bounded by:

/ : 29 dx)l_%
|z|>2-de+1 ’x|N(2Tq)
. g
(f o L[ e, aqtisayin)? (62
xr|>27J¢ s n

< gelnG)- N)< 2N iz—y.€) 202V 2 d )q
< 0 Ly 1@ @IC[ e =v2) [rSayy, aeran)

< —qu(n(;—é)—N)< . Y >q

S 2 /Q(OJ) IaQ(y)!(/Rn |0¢a;(y, €)|2d€) 2 d

< g—ige(n(i—H—N)+ja(-n(1—0)(—1)+5—eN)ja(n—2)

X

The proof of (59) is a little different from (58), that is, the first term in (61) and (62) is

29 _q 1 4
(/ ]aﬁ\tiqqu)l 2 and (/ 72qala;)1 2,
|z|<2-7e |z|>2-de+1 ’x|(N*t)(ﬂ)

b

O

In the course of the above proof, if p = 0, || ~ |x — y| is still true for [ < 1, y € Q(0,1) and
|z| > 2. Thus, we have the followings.
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Lemma 3.3. Let Q(0,1) be a fized cube with side length | < 1. Suppose 0 < ¢<2,0<p<1
n(3—3)

and 0 < 6 < 1. For any positive integer j with ™1 < 27 if a € SO(S then
/ Traq(@)ids 5 2™0=»)pm0=), (63)
Rn
/ |x|qt|1—;ﬂaQ($)|qd$ < 2an(1—%)lqn(1—%)_ (64)
Rn

Lemma 3.4. Suppose 0 < ¢<2,0<p<1,0<p<1and0<4§<1. For any positive integer

N, > 2P g €S, (-0}~ then

/ T;ag(x)|9de < lqn(q*;)QfJQ(n(lfg)(;*%)*gmaX(OﬁfQ))
Rn
(G =2+1)=N2) gia(—n(1-0) (2= 1)+ 5 —eNa), (65)

[ el Taq@tar 5 1mGopagsl-oGod)- o)
Rn

4 a(nG =t -N2) gia(—n(1-0)(} ~5)+ 5 —e(Nat1) (66)

Proof. Break up the integral with respect to the variable x as follows

/x|<2l /|;g>21 (67)

Notice that a;(y,§) € 595 with bounds < 2 —In(1=0)(G=5)+i5 max(00-0) - g der’s in-
equality and the L2-estimate of Tj; give that the first integral in (67) is bounded by:

1—€ o
( / dz)' "4 |2 aq)|%, (68)
|z| <21

< " n(1-4)o= J(I( (1- Q)(%—%)—Emax(05 Q)HQQHqL?

% max(0,0—p)

< an(t-1)g—ja(n(1-e)(3~3)~5 max(06-0))

By Hélder’s inequality, integrating by parts, the Parseval’s identity and the fact that |z| ~ |x—y]
follows from [ < 1, y € Q(0,1) and |z| > 2I. The second integral in (67) is bounded by:

1 _q
/ —— d:t:)1 2
ja|>21 || N2(379)

([P [ [, ag(dedys) (69)
|z >21 Q(0,) JR~
< (G =3+H-N2) gia(-n(—-)(E—1)+5—oN2)
The proof of (66) is a little different from (65), that is, (68) and (69) in this case are given as:
([ 1el¥5d0) iz aoll,
|| <21

and

1 _p
/ —— clgu)1 >
2| >21 || V2(375)

N2+t i(x—y,&) ded 2d
([ ]y, agacdytaz)

D
2
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respectively. O

Remark 3.1. Lemma 3.2 and Lemma 3.4 are still valid when o = 1, but both of them can not be
used. In fact, there is no Tj* in Lemma 3.2 and no convergence factor in Lemma 3.4. However,
the HP-continuity in this paper can be proved without them.

Remark 3.2. Lemma 3.1, Lemma 3.2 and Lemma 3.4 hold for T;. They can be proved parallelly,

provided in the arqgument above if we apply the L?-estimate for pseudo-differential operators

_n(l=p)(t=1y_n 0,6—
instead of the Parseval’s identity at cost of a € SQ ;( AG2) =5 max( Q),

Proof of Proposition 3.1. (1) is considered firstly. By standard molecular technique, it is suf-

n

ficient to show that if ag be a (p,2,2t) atom with ¢ an even integer t > 7 then T*aq is a
(p, 1, s,€) molecule, where s = [n(% —1)]. Without loss of generality, we assume @ = Q(0,1).
Take ¢ = % — % (clearly,e > max{Z, % —1}), thenag =1 — % + % and by = % The vanishing of
T*agq is clear. So, it has to be shown that

1 t
il

* 1- * 2-1
1T aqll . * "'T*aq ()|}, < oc.

To this end, it suffices to show the following inequalities

IT*agllpr S 145 and ||| ['T*aq()|p S 1€ %), it 0<l<1;
IT*agllp 175 and ||| - ["T*ag( )|l S1T70), it 1> 1

We compose the operator T, as (10) when 0 < p < 1, then || T*ag||;1 and ||| - [*T*aq(-)||.: are

bounded by:
Z/n T} ag(x)|dr  and Z/n ||| T ag ()| da.
7 /R 5 /R
Case 1. For 0 <[ < 1; break up this sum as before, that is,

2]~ 71«27 70
S+ Y 4+ Y, ifo<p<l. (70)
20<i—1 i

1 1
1=1<2i<l e | e<2i
If 0 < o < 1, by Lemma 3.1, Lemma 3.2 and Lemma 3.4 after taking ¢ = 1, the corresponding
sum can be bounded by
Z gine(y—D+in(l=p)+in gy (1=5§) n(l=p)+nsg (1-5) | Z 9—in(1=0)(;=1)n(1-3)
27 <11 lflggjgl_%
. (ln<1;)2j(n<1g>(;;wgmax(o,ag)) 4 O35 M) g (n(lex;;)gwm))
l*%<2j
Clearly, the second sum above is convergent to ¢ =%) since n(l— Q)(% —1) > 0. Note that ¢ is
large enough, and so we can choose suitable positive integer 2N > 5 so that ng(% —1)+n(1l-

%) +nﬁ(1 —£) > 0since 1 — & > 0. The first sum is convergent to 19"=3) as well. Notice that

n(l— Q)(% — 1) — 2max(0,0 — ) > 0, the first term in last sum is convergent to

=D+ -0 (E—1)-3 max(06-0) _ je(n—2)+2((2-1)(1-0)+1(~*+0)—max(0,6-0)).
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Notice that [ < 1 and

Z((; - %)(1 —0)°+ %(—92 +0) - %maX(Oﬁ - 0))
> Z((; - %)(1 — 0+ %(—92 +20-1))
= 2 -D-0? >0

(n—3)

We can get the first term in last sum is less then 2" Taking N> large enough, we get the

second term in last sum is convergent to

=D+ 34+3 -0 (3-1-3) _ jen-2)+2((2-1)(1-0)?)  jetn—2)

If p = 0. Lemma 3.1, Lemma 3.2 after taking ¢ = 1, and Lemma 3.3 give that the corre-
sponding sum can be bounded by:

Z anu—%)ﬂnﬁ(1—g)ln(1—%)+nﬁ(1—g)+ Z 2—jn(%—1)ln(1—%) <1
27 <11 1=1<2J

If o = 1, we can divide a(z, &), with respect to variate &, smoothly into two parts, that is,
a(z, &) = a1(x, &) + ax(z, &) with suppgdl(x &) c {¢] < 17} and suppeas(z, &) C {|¢] > 171}
For T , we compose it into }_, T . as (10), then T ag = 0 when 2/ > 17! and T3, jaq meat

ai’ al J
the condition of Lemma 3.1 when 27 <=1, So

| Tigeite < Y [ 1T jegla)ide

27 <11
< 3 9in(y =D +in(1=) +ingy (1=5) n(1=3 1 +ngy (1-5) < (n=5)
27—t

Notice that as(y, &) € 5?5. By the same argument as Lemma 3.4, it is easy to get
1
[ Trag@lds 5107,
R

Next, we show the inequality ||| - [*T*aq(-)||11 < 1907=5)  Notice that t is fixed large enough
and [* < 19 for 0 < p < 1, this inequality can be obtained by a similar argument as above. Here,
the estimates (54),(59) and (66) will be applied instead of (53), (58) and (65).

Case 2. [ > 1; (65) in Lemma 3.4 gives (after taking ¢ = 1 and Ny large enough)

Z/ |T7*CLQ(.'L')|dZL' 5 Z <ln(1—11))2—j(n(1— ) %—%)—7max(06 Q))
j R j
4 = DHE =N g (n(1- g)(;;>g+gzv2)) < p-3)

(66) in Lemma 3.4 gives (after taking ¢ = 1 and N, large enough)

S [ blTaowiar £ X (i -g o)
— JRn
J

J
L pbHE-Na)g-i(n(-0) p—>—+@<Nz+t>))

< " (1—*) + " n(1-1 )<l (1—1)‘Ht

By Remark 3.2, the proofs of (2) are completely parallel. O
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Proof of Theorem 1.16. The proofs of (1) will be shown only and the proofs of (2) are completely
parallel. Here, we always assume 0 < o < 1 as the case p = 1 is considered in Theorem 1.15.

The 0 < p < 1 is considered firstly. Let nonnegative integer ¢ > [n(% —1)] ([z] indicates the
integer part of [z]). A function ag € L(R") is called (p,2,t) atom if it satisfies the following
conditions:

W) suppag < @ 2) [ Jao)I <1QI T B) [ aglydy=0,0 jal <1,

where Q = Q(7,1) is the cube about g with sidelength [ > 0. According to the characterization
of the Hardy spaces HP(R™) via the atomic decomposition, it suffices to show that

[ 1ragypas < c. @

for an individual (p,2,t) atom ag, where constant C' independent of ag. We assume without
loss of generality the center of the cube @) is at the origin and decompose the operator T} as
(10). Then, we have

/R T*ag(@)Pdz < Z / 2)|Pdz. (72)

For the case [ > 1, Lemma 3.4 (after taking ¢ = p) implies that it can be bounded by:

i <2jp( n(1-0)(E~ 1)~ 5 max(05-0)) , p(5—Na)g—ip(n(1- g)(,l,;)gwfvz))
j=0
Clearly, n(1 — g)(% —3)— 2 max(0,6 — ) >0 and n(1— )(% —3)— 2+ 9N, > 0 (the case p = 0

is trivial and the case ¢ # 0 can be provided by letting No large enough). So, the sum above is
convergence.

Next, we consider on the case | < 1. Break up the sum in (72) as (70) again.

If 0 < p < 1, by Lemma 3.1, Lemma 3.2 and Lemma 3.4 (after taking ¢ = p), we see that it
can be bounded by:

D A i LU A L I PSS

2i<]—1t

-

1—1<2i<] " e
. <2 —ip(n(1-0)(E -1~ max(0.6-0)) | jp(%—Na)g—ip(n(i- @)(—é)—SJrgNz))'
l*%<21
It is easy to see that the second term above is convergent since 0 < p < 1. Let ¢ large enough,
and then we can choose suitable positive integer 2N > (2 n2-p) oo that n(p—1) +n2N 1-5)>0
since 1 — § > 0. The first term is convergent too. Taking Ng large enough, we get the last term
is convergent to
L paopGeD < g

If p = 0, by Lemma 3.1, Remark 3.3 and the same argument as above, we get the desired
estimate easily.

Now, we consider that p = 1. The case 0 < § < p < 1 has been performed in [33]. The
remaining case 0 < p < d < 1 will be considered only. To this end, break the sum in (72) as (70)
again. The sum for 2/ < [~! and 2/ > 171%5 when ¢ = 0, and for 27 < [~! and 2/ > l_% when
0 < o < 1 are convergence by Lemma 3.1 and Lemma 3.4 (after taking ¢ = p = 1). By Lemma
3.2, one can not deal with the sum for [~ < 27 < l_ﬁ when o = 0, and for [~ < 27 < lié when
0 < o < 1 as above. Because, there is no convergence factor in this lemma when ¢ = p = 1. One
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can overcome this problem as the corresponding case in the proof of Theorem 1.5 by following
lemmas. The proof is completed. ]

Lemma 3.5. Let Q(xo,l) be a fized cube with side length I < 1. Suppose 0 < p < § < 1,
a € S 2(1 )
with [~ ’\ <2< l_%, we have

. Then for any 1 < XA < é, any positive integer N > 5 and any positive integer j

/ Trag(x)dr < 291 273G 0% G D),
R’ﬂ
Lemma 3.6. Let Q(xo,l) be a fized cube with side length | < 1. Suppose p =0, 0 < 0 < 1,

a¢c SO_,JE’ then for any 1 < A < 1—£5, any positive integer N > g and any positive integer j with
A< 2i <7 T,
/ Trag(a)lde < 271 +293GR D5 (G0,
R

These lemmas can be proved by the main idea in the proof Lemma 2.5. We will only outline
the proof of Lemma 3.5.
Proof of Lemma 3.5. Let Q(z;,1") be given as in the proof of Lemma 2.5.

Q(z0,1) € UZ1Q(xi, 1) € Q(xo, 21).

Denote

T / / el a(ay, v (277€)déaq(y)dy

We can write

/ T ag(z)|dx < Z/ F(aQX (e, ) () |dx
LTL

< ([ 15 0oxap)@) - Tiaaxame)@lie + [ T5a0xqum)@lde )

i=1
Using the similar method as Lemma 2.3 (p = 2) and Lemma 2.4 (p = 2), one can get

/Rn T} (00X, () = Tji(agXq(e, ) (@)lde 5 270070+

and
[ 175100 q(e, ) @)ldn 213 DR oy,
RTL
which gives the desired estimate immediately. O

4. CONCLUSION

This paper has investigated the boundedness properties of pseudo-differential operators and
their adjoints on various function spaces. We established pointwise estimates involving the
sharp maximal function, which in turn yielded weighted LP and Hardy space H? (0 < p < 1)
inequalities. A key improvement lies in extending the range of parameters o, 0 to the general case
0<p<1, 0<4 <1 and obtaining results for the adjoint operator 7,7, whose L? theory differs
from that of T,. For the Hardy space HP, we introduced a generalized cancellation condition
to prove boundedness for a wider range of p than previously known. The results significantly
extend classical theorems proved by several authors providing a more complete picture of the
mapping properties for these operators in the Hérmander class.



G.Q. WANG: SHARP MAXIMAL FUNCTION ESTIMATES AND HP CONTINUITIES ... 269

5. ACKNOWLEDGEMENT

Research and the writing of this paper were supported in part by Scientific Research Foun-
dation of Education Department of Anhui Province of China (2022AH051320,KJ2021A0659),
Doctoral Scientific Research Initiation Project of Fuyang Normal University (2021KYQDO0001)
and University Excellent Young Talents Research Project of Anhui Province (gxyq2022039).

17)
18]
[19]
20]
21]
22)
23)

[24]

REFERENCES

Alvarez, J., Hounie, J.,; (1990), Estimates for the kernel and continuity properties of pseudo-differential
operators, Ark. Mat., 28(1), pp.1-22.

Alvarez7 J., Milman, M., (1986), H” continuity properties of Calder6n-Zygmund-type operators, J. Math.
Anal. Appl., 118(1), pp.63-79.

Alvarez, J., Milman, M., (1986), Vector valued inequalities for strongly singular Calderén-Zygmund operators,
Rev. Mat. Iberoam., 2(4), pp.405-426.

Bagchi, S., Basak, R., Garg, R., Ghosh, A., (2023), Sparse bounds for pseudo-multipliers associated to
Grushin operators, I, J. Fourier Anal. Appl., 29(3), pp.1-38.

Bagchi, S., Basak, R., Garg, R., Ghosh, A., (2024), Sparse bounds for pseudo-multipliers associated to
Grushin operators, II, J. Geom. Anal., 34, article number 34.

Bergh, J., Lofstrom, J., (1976), Interpolation Spaces. An Introduction, Springer, Berlin, 207p.

Beltran, D., Cladek, L., (2020), Sparse bounds for pseudodifferential operators, J. Anal. Math., 140, pp.89-
116.

Chanillo, S., Torchinsky, A., (1986), Sharp function and weighted L? estimates for a class of pseudo-
differential operators, Ark. Mat. 24(1), pp.1-25.

Coifman, R., Meyer, Y., (1978), Au Dela des Opérateurs Pseudo-Différentiels, Astérisque, 57, 210p.
Deringoz, F., Guliyev, V.S., Omarova, M.N., Ragusa, M.A., (2023), Calderén-Zygmund operators and their
commutators on generalized weighted Orlicz-Morrey spaces, Bull. Math. Sci., 13(01), pp.2250004.
Fefferman, C., Stein. E., (1972), H? spaces of several variables, Acta Math., 129(3-4), pp.137-193.
Fefferman, C., Stein, E.M., (1972), H? spaces of several variables, Acta Math., 129(1), pp.137-193.

Frazier, M., Torres, R., Weiss, G., (1988), The boundedness of Calderén-Zygmund operators on the spaces
F;’q, Rev. Mat. Iberoam., 4(1), pp.41-72.

Goldberg, D., (1978), A local version of real Hardy spaces, Princeton University.

Guliyev, V.S., Akbulut, A., Celik, S., Omarova, M.N.; (2019), Higher order Riesz transforms related to
Schrédinger type operator on local generalized Morrey spaces, TWMS J. Pure Appl. Math., 10(1), pp.58-75.
Guliyev, V.S., Ismayilova, A.F., (2021), Calder6n-Zygmund operators with kernels of Dini’s type and their
multilinear commutators on generalized weighted Morrey spaces, TWMS J. Pure Appl. Math., 12(2), pp.265-
277.

Guliyev, V.S., Omarova, M.N., Ragusa, M.A., (2023), Characterizations for the genuine Calderén-Zygmund
operators and commutators on generalized Orlicz-Morrey spaces, Adv. Nonlinear Anal., 12(1), pp.20220307.
Hart, J., Lu, G., (2016), Hardy space estimates for Littlewood-Paley-Stein square functions and Calderén-
Zygmund operators, J. Fourier Anal. Appl., 22(1), pp.159-186.

Hounie, J., (1986), On the L? continuity of pseudo-differential operators, Comm. Part. Differ. Equa., 11(7),
pp.765-778.

Hormander, L., (1971), On the L? continuity of pseudo-differential operators, Comm. Pure Appl. Math.,
24(4), pp.529-535.

Hoérmander, L., (1967), Pseudo-differential operators and hypoelliptic equations, Singular integrals (Proc.
Sympos. Pure Math., Vol. X, Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I.,1976, pp.138-183.
Journé, J., (2006), Calderén-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of
Calderén, Springer, 132p.

Kenig, C., Staubach, W., (2007), ¥-pseudo-differential operators and estimates for maximal oscillatory inte-
grals, Studia Math., 183, pp.249-258.

Michalowski, N., Rule, D., Staubach, W., (2012), Weighted L? boundedness of pseudo-differential operators
and applications, Canad. Math. Bull., 55(3), pp.555-570.



270

[25

26

[27]
28]
[29]

30

31

[32]

33

[34

36

[37]
[38]
[39]

[40]

TWMS J. PURE APPL. MATH. V.16, N.2, 2025

Michalowski, N., Rule, D., Staubach, W., (2010), Weighted norm inequalities for pseudo-pseudo-differential
operators defined by amplitudes, J. Funct. Anal., 258(12), pp.4183-4209.

Miller, N., (1982), Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans.
Amer. Math. Soc., 269(1), pp. 91-109.

Miyachi, A., (1981), On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 28(2), pp.
267-315.

Miyachi, A., Yabuta, K., (1987), Sharp function estimates for pseudo-differential operators of class S;’s, Bull.
Fac. Sci. Ibaraki Univ. Ser. A, 19, pp.15-30.

Park, B., Tomita, N., (2024), Sharp maximal function estimates for linear and multilinear pseudo-differential
operators, J. Funct. Anal., pp. 110661.

Park, J., (2019), Boundedness of pseudo-differential operators of type (0,0) on Triebel-Lizorkin and Besov
spaces, Bull. London Math. Soc. 51(6), pp.1039-1060.

Park, B., (2018), On the boundedness of pseudo-differential operators on Triebel-Lizorkin and Besov spaces,
J. Math. Anal. Appls, 461(1), pp.544-576.

Park, B., Tomita, N., (2024), Sharp maximal function estimates for multilinear pseudo-differential operators
of type (0,0), arXiv preprint arXiv:2405.02093.

Paivérinta, L., Somersalo, E., (1988), A generalization of the Calderén-Vaillancourt theorem to LP and h?,
Math. Nachr., 138(1), pp.145-156.

Ragusa, M.A., (2021), On Some Local and Nonlocal Variational Problems, Generalized Functions Online
Workshop. Cham: Springer Nature Switzerland, 2021, pp.321-331.

Stein, E., (1993), Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,
volume 43 of Princeton Mathematical Series, Princeton University Press, NJ, 695p.

Taibleson, M., Weiss, G., (1980), The molecular characterization of certain Hardy spaces, Astrisque, 77, pp
67-149.

Torres, H., (1991), Boundedness results for operators with singular kernels on distribution spaces, Mem.
Amer. Math. Soc., 90(442).

Wang, R., Li, C.,(1984), On the LP-boundedness of several classes of pseudo-differential operators, Chinese
Ann. Math. Ser. B, 5, pp.193-214.

Wang, G., Chen, W., (2023), A pointwise estimate for pseudo-differential operators, Bull. Math. Sci., 13(02),
pp-2250001.

Wang, G., (2022), Sharp function and weighted L? estimates for pseudo-differential operators with symbols
in general Hormander classes, arXi preprint arXi:2206.09825.

Wang Guanggqing holds a Doctor of Science de-

gree. He works at Fuyang Normal University. En-
gaging in the study and research of harmonic anal-
ysis theory, mainly focusing on the regularity of
pseudo-differential operators and Fourier integral

operators.



